京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析与数据挖掘,你了解多少
1.数据挖掘与数据分析在实际工作中,真的有很大区别甚至是区别吗?我知道一些定义,比如数据分析偏重于统计,而数据挖掘的工作是分类,聚类,是信息的提炼,但是实际工作中是不是往往两方面都在做?分不清,分不开。
答:第一个问号你指哪方面有区别?第二个问号,实际工作中是“谁”两方面都在做?
给些提示:实际工作中,数据挖掘通常后面跟的是工程师(engineer),而数据分析,英文是analyst。通常,一个人或者是分析师,或者是挖掘工程师,不会同时是两个角色,至少会有所侧重。
2.有些单位(互联网、软件)找数据方面的人会要求编程比如python,R,hadoop等。有些则似乎要求的是应用,比如spss,sas,modeler(过去叫clementine)等。是不是编程的那部分人使网站能动态的响应,而应用的那部分人的工作是通过了解分析改善运营跟业务状况?是不是有些公司把这部分人叫做需求分析师,业务分析师等?
答:数据方面的人,这个用词反映出你对实际工作确实了解不多。什么叫“数据方面的人”?数据有很多方面,因而也会有很多方面的人。我的理解是,你说到的编程,更偏基础层建设,而你提到的应用,是基于基础层进行的应用,属于analyst范畴。
3 针对与2所提问及的搞应用的人,现在的公司真的有对他们的分析结构给予足够重视吗?这部分人一般在什么部门?岗位多吗?
答:分析结果公司是否给予足够重视,这个问题还是太大,因而很那回答。我来解构一下:谁代表公司?业务方吗?业务方的什么级别的人呢?进而,假设你的分析结果是给业务部门的总经理做汇报,那么你的分析结论真的对总经理的工作有助益吗?如果回答为是,我想总经理会重视的。而如果你的分析结果没到总经理关注的层面,一来你可能没有机会把结论晒给总经理,你是否会得出结论这家公司不重视你的分析
这部分人的分布通常可能是这样:大型公司会有独立的BI部门(商业智能部),这部分人集中于此;某些小公司,这部分人直接归属在业务部门,比如运营部、销售部,甚至财务部等。
4 对于整个数据分析/数据挖掘,你们觉得是一次概念炒作,又或是我们遇到了大数据/云时代,所以有比很大的应用前景?
答:又是个很大的问题,前景二字,不用管概念如何炒作,你总能判断出来人类未来的决策会越来越依赖信息,即越来越依赖数据的产出。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27