京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据的无量纲化处理和标准化处理的区别是什么
请教:两者除了方法上有所不同外,在其他方面还有什么区别?
解答:
标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值比处理)、函数化(功效系数)方法,等等。由于标准化处理方法可以与分布函数结合,所以应用比较广泛。如果指标有正、逆之分,功效系数方法也不错。初值比处理方法主要应用在灰色系统关联分析方面。
标准化并不能解决正向化问题,如果要将数据正向化,需要其他无量钢化的方法,例如我要将数据全部变成0到100之间的数,那么可以用compute计算公式:

(x-min(x))/(max(x)-min(x))*100
数据的标准化处理
(1)数据的中心化处理
数据的中心化处理是指平移变换,即
该变换可以使样本的均值变为 0,而这样的变换既不改变样本点间的相互位置,也
不改变变量间的相关性。但变换后,却常常有许多技术上的便利。
(2)数据的无量纲化处理
在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,
使每个变量都具有同等的表现力,数据分析中常用的消量纲的方法,是对不同的变量进
行所谓的压缩处理,即使每个变量的方差均变成1,即
还可以有其它消量纲的方法,如
(3)标准化处理
所谓对数据的标准化处理,是指对数据同时进行中心化-压缩处理,即
用在哪方面 数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作ANOVA。
我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病
人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体
的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。(均值法)
从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。(方差分析)。
模型
方差分析一般用的显著性水平是:取α = 0.01,拒绝0 H ,称因素A 的影响各水平的差异显著,取α = 0.01,不拒绝0 H ,但取α = 0.05,拒绝0 H ,称因
素A的影响显著;取α = 0.05,不拒绝0 H ,称因素A 无显著影响。
例子 例1 为考察5 名工人的劳动生产率是否相同,记录了每人4 天的产量,并算出其平均值,如表3。你能从这些数据推断出他们的生产率有无显著差别吗?
工人
天 1 A 2 A 3 A 4 A 5 A
1 256 254 250 248 236
2 242 330 277 280 252
3 280 290 230 305 220
4 298 295 302 289 252
平均产量269 292.25 264.75 280.5 240
解 编写程序如下:
x=[256 254 250 248 236
242 330 277 280 252
280 290 230 305 220
298 295 302 289 252];
p=anova1(x)
求得p = 0.1109 >α = 0.05,故接受0 H ,即5 名工人的生产率没有显著差异。
曲线拟合(判断,估计,两者的关系)
线性最小二乘法 已知一组(二维)数据,即平面上的n个点(xi , yi) ,
i = 1,2,L,n,… i x 互不相同,寻求一个函数(曲线) y = f (x),使f (x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
模型
例5 某乡镇企业1990-1996 年的生产利润如表5。
表5
年份 1990 1991 1992 1993 1994 1995 1996
利润(万元) 70 122 144 152 174 196 202
试预测1997 年和1998 年的利润。
解 作已知数据的的散点图,
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
plot(x0,yo,’*’)
发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用1 0 y = a x + a 作为
拟合函数来预测该乡镇企业未来的年利润。编写程序如下:
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
a=polyfit(x0,y0,1)
y97=polyval(a,1997)
y98=polyval(a,1998)
求得20 1 a = , 4
0 a = −4.0705×10 ,1997 年的生产利润y97=233.4286,1998 年的生产利润为y98=253.9286 最小二乘优化(mtalab cftool)
回归分析
用途 简单地说,回归分析就是对拟合问题作的统计分析。
前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的
一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数
据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要
作的工作是由数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29