CDA数据分析就业班针对时间充裕、零基础的专科、本科在校生,以及待业、期待从事数据分析的工作人员提供3个月全脱产集训,毕业推荐相关工作单位。 CDA数据分析就业班每期至少十位以上相关领域专家授课,以CDA ...
2020-02-10本课程根据运营人的普遍困惑设计,用“软知识”提升运营人对互联网公司和运营职业的理解,并在几个主要方向进行深入学习和演练;用“硬技能”训练运营人对通用型方法和技术的掌握,形成自身的能力壁垒。 “软 ...
2019-10-21而网络爬虫是收集相关数据的利器,它可以抓取某个网站或者某个应用的内容,提取有用的价值以及各种数据。也可以模拟用户在浏览器或者App应用上的操作,实现自动化的程序。 “工欲善其事,必先利其器”,当您 ...
2019-08-28社会网络分析思想最早起源于20世纪30年代西方的心理学和人类学研究。 (1) 社会计量学派运用图论方法对社会网络分析做出了杰出的贡献。 (3) 20世纪50年代,曼彻斯特学派进行了大量的社会网络研究,他们把 ...
2019-08-22罗伯特•戴在其名著《如何撰写和发表科学论文》的序言中指出,“对一个科学家的评价,从研究生开始,就主要不是看他在实验室操作的机敏,不是看他对或宽或窄的研究领域固有的知识,更不是看他的智能和魅力,而是看 ...
2019-06-14《人工智能地图2.0》是15位人工智能专业人士在280个小时视频与100万字讲义的基础上,耗费18个月精心打造而成。 《人工智能地图2.0》共分9大方向,分为历史篇:人工智能发展简史;理论篇:机器学习、深度学 ...
2019-06-12CDA LEVEL 3数据科学家精英培训是符合「CDA数据分析师人才行业标准」最高等级准则的一套能够将数据分析师(Data Analyst)培养为数据科学家(Data Scientist),具备专业性、科学性、高端性、先进性的领袖级人 ...
2019-04-30《数据统计分析师SPSS认证》课程注重培养学员的实证分析能力,通过诸多案例讲解不同的应用背景。我们一方面尽可能呈现SPSS全貌,使学员对软件有总体的认识。另一方面则强调实际问题的解决能力,例如,在问题情 ...
2019-04-22【CDA情人节献礼-所有美好,只为遇见你】 Hi,热爱数据分析的你,你有一份情人节创意礼物,快参与领取吧。 活动时间:2019.2.14~2.16 活动规则: 一 ...
2019-02-14CDA数据分析就业班针对时间充裕、零基础的专科、本科在校生,以及待业、期待从事数据分析的工作人员提供3个月全脱产集训,毕业推荐相关工作单位。 CDA数据分析就业班每期至少十位以上相关领域专家授课,以CDA ...
2019-01-14现代经济学问题需要数学工具实现 对于中国的一些学生,在学了数学、计量经济学这样一些课程以后不知道怎么用,我觉得这本身跟中国的一些课程的设置是有关系的。在美国,在你学习经济学之前就会告诉你一些必须的先 ...
2018-12-06CDA数据分析师项目 圆你校园创业梦想 CDA数据分析师 (代理合作处) Department of Agency 公告: Advertisement: 即日起由数据分析中心与CDA数据分析师协会(Certified Data Analyst Institute) ,联合举 ...
2018-10-24在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10