京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会网络分析(SNA) 是一套规范的对社会关系与结构进行分析的方法,社会网络分析的对象是不同的社会行动者内在联系而构成的网络结构。
社会网络分析思想最早起源于20世纪30年代西方的心理学和人类学研究。
社会网络分析主要沿着下面三个大的方向进行发展:
(1) 社会计量学派运用图论方法对社会网络分析做出了杰出的贡献。
(2) 20世纪30年代的哈佛学派致力于研究人际模式和"团伙"形式。
(3) 20世纪50年代,曼彻斯特学派进行了大量的社会网络研究,他们把社会网络分析技术运用到了人际关系上。
20世纪70年代以后,新哈佛学派在社会网络分析方面做出了巨大的贡献,他们逐步的完善了社会网络分析这种独特的研究方法。
自20世纪90年代以来,随着计算机技术的不断发展和网络分析理论研究的深入,社会网络分析的模型得到了进一步的改进,社会网络分析跨越了传统的学科界限从而越来越多的运用到了各个领域。社会网络分析逐渐成为了一种跨学科的研究方法。
社会网络分析的意义:
通过对网络中各种关系进行客观的定量分析为实证研究提供量化的检验工具。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
社会科学研究的对象应是社会结构,而不是个体。通过研究网络关系,有助于把个体间关系、“微观”网络与大规模的社会系统的“宏观”结构结合起来。故英国学者J•斯科特指出:“社会网络分析已经为一种关于社会结构的新理论的出现奠定了基础。”
从零基础掌握社会网络分析,使用Python作为载体, 结合理论知识实际操作,
使学员不仅理解社会网络分析的计算思维方法, 同时掌握实际计算技能:
社会网络分析思想与应用现场班
培训时间:2019年9月13-14日 (周末两天)
培训地点:北京市海淀区丹龙大厦
培训费用:2000元 /1700元(学生价, 仅限全日制本科及硕士在读)
授课安排:上午9:00-12:00,下午1:30-4:30,答疑4:30-5:00
讲师介绍:
张忠元, 理学博士, 中央财经大学教授, 博士生导师, 中国计算机学会高级会员, 果壳网科学顾问。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery,Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery,Physica A, Management Science等著名期刊的匿名审稿人。
课程目的:
1. 希望大家经过两天的学习, 能对基本的社会网络分析理论和实际应用有所掌握, 同时掌握Python分析网络数据的基本技能;
2. 希望学员能够理解大量顶级期刊上相关领域的研究, 以期为后续学习和研究打下宽厚坚实的基础。
课程大纲:
第1讲(3小时)
1. 欧拉七桥问题(0.5小时)
2. 图论的发展历史(0.25小时)
3. 社会网络分析的发展历史(0.25小时)
4. 图论的现状和主要关注的问题(2小时)
第2讲(2.5小时)
1. Python编程的基础知识(0.5小时)
2. 图论相关编程实践(0.5小时)
3. 社会网络分析的现状和主要关注的问题(0.25小时)
4. 社会网络的小世界性质(0.5小时)
5. ER、WS、BA网络生成模型(0.5小时)
6. 其它生成模型, 产生具有特定拓扑结构性质的网络 (0.25小时)
7. 使用Python进行实操生成网络
第3讲(3.5小时)
1. 社会网络拓扑结构的稳健性和易感性(0.5小时)
2. 社会网络的同配性概念和计算(0.25小时)
3. 弱连边的强度(0.25小时)
4. 社会网络点的中心性(0.5小时)
5. 社会网络的社团结构探测: 方法和评价(0.5小时)
6. 链路预测(0.5小时)
7. 符号网络、多层网络和含时网络分析(0.5小时)
以上均使用python实际操作
第4讲(3小时)
1. 社会网络上的博弈论(0.5小时)
2. SI、SIS、SIR模型 (0.5小时)
3. 线性阈值模型、级联模型(0.25小时)
4. 以上模型的性质, 关系和区别 (0.25小时)
5. 以上模型的python实操 (0.25小时)
6. 案例、文献阅读、机动、互动和答疑时间(1小时)
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1,点击“https://www.cda.cn/kecheng/67.html”,填写报名信息提交;
2,通过订单支付(需要刷卡或者对公转账请与我们联系);
3,开课前一周发送资料及交通住宿指南;
4,现场领取发票及开课通知。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17