
大数据时代数据分析的必备技能
时间:
初级:2018年7月29-31日(三天)北京, 8月6-8日(三天)上海
高级:2018年7月31-8月2日(三天)北京, 8月8-10日(三天)上海
全程:2018年7月29-8月2日 (五天)北京, 8月6-10日(五天)上海
地点:北京市海淀区厂洼街3号丹龙大厦附近/上海市南京东路培训教室
费用:
初级:3300元 / 2800元 (仅限全日制本科生及硕士研究生优惠价)
高级:3600元 / 3100元 (仅限全日制本科生和硕士研究生优惠价)
全程:6000元 / 5400元 (仅限全日制本科生和硕士研究生优惠价)
(食宿自理)
安排:上午9:00-12:00;下午2:00-5:00;答疑
报名链接:https://www.cda.cn/kecheng/68.html,点击“立即报名”
R简介:
R语言由新西兰奥克兰大学ross ihaka和robert gentleman 开发。R语言是自由软件,可以放心大胆地使用,且具有非常强大的统计分析和作图功能,而且更重要的是R软件具有非常丰富的网上资源,目前R软件有3000多种贡献包,几乎可以实现所有的统计方法,目前大部分的统计学家和计量经济学家都使用R语言,而且越来越多的数据分析实务人员也开始使用R语言。R语言具有简单易学,功能强大,体积小(仅40m左右),完全免费,可自由开发等特点,且R语言和S语言语法基本相同,绝大部分程序是互相兼容的。学习R软件正成为一种趋势。
R软件最优美的地方是它能够修改很多前人编写的包的代码做各种你所需的事情,实际你是站在巨人的肩膀上。——Google首席经济学家Hal Varian
学员对象:
金融、医疗、通讯、咨询、电子商务等领域的数据分析人员、数据挖掘工程师、数据科学家;
高校硕士生、博士生、青年教师等。
1. 让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会基本的编程方法。
2. 以实际案例引入,深入浅出地讲解如何使用R语言进行数据挖掘和机器学习,让学员不仅掌握R语言的使用,更重要的是学会数据挖掘和机器学习的思想、原理和方法。
3. 学完本课程后,使学员基本上可以使用R语言进行实际的数据挖掘工作。尤其学会使用R语言对批量处理的实务数据分析,大大提高工作效率。
专题名称 |
授课内容 |
第1讲(3小时) R语言入门 |
目标:掌握R语言的基本用法 1.R语言介绍 2.编辑软件Rstudio使用 3.R程序包的载入与使用 4.数据对象及运算(向量、矩阵、数组、列表与数据框处理) |
第2讲(3小时) 数据读写 R基本编程 |
目标:掌握用R编写函数和数据的读写 1. R数据读入与读出 (读入txt、xls、SPSS、SAS、stata以及数据库文件) 2.R 函数编写 3.R的条件与循环函数 4.高效编程技巧介绍 |
第3讲(3小时) 数据预处理 探索性分析 |
目标:掌握数据预处理与探索性分析 1.数据预处理 2.缺失值处理 3.随机数生成 4.常用统计方法的蒙特卡洛模拟 5.随机抽样 6.单变量数据分析与作图 7.双变量数据分析与作图 8.多变量数据分析与作图 案例1:统计作图在调查数据中的应用 案例2:统计作图在临床医学中的应用 |
第4讲(3小时) |
4.一元线性回归 5.多元线性回归 6.逐步回归 案例1:广告营销计划案例 案例2:信用卡债务预测案例 案例3:房价预测案例 |
第5讲(3小时) 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第6讲(3小时) 重抽样方法 互动交流讨论 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 互动交流讨论 |
专题名称 |
授课内容 |
第1讲 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第2讲(3小时) 重抽样方法 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 |
第3讲(3小时) 组合预测 |
课程目标:掌握决策树和组合预测方法及其实际应用。 1.CART决策树 2.Bagging 3.随机森林 4.Boosting算法 案例1:棒球运动员薪水预测案例 案例2:心脏病预测案例 案例3:信用卡违约预测案例 |
第4讲(3小时) |
课程目标:掌握支持向量机分类方法 1.间隔分类器 2.支持向量分类器 3.支持向量机 案例1:基因表达数据案例 案例2:股票涨跌方向预测 |
第5讲(3小时) 变量选择与高维数据 |
目标:掌握数据挖掘中高维数据分析方法及其实际应用 1.LASSO 2.SCAD 3.MCP 4.Group LASSO 案例1:基因筛选 案例2: 股票选股 |
第6讲(3小时) 无监督学习 主成分分析 主成分回归 聚类分析 |
目标:掌握无监督学习方法及其应用。 1.主成分分析 2.主成分回归 3.Kmeans聚类分析 4.系统聚类分析 案例1:广告支出主成分分析 案例2:犯罪率主成分分析 案例3:学生考试成绩主成分分析 案例4:客户细分聚类案例 |
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1:点击报名链接,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费(需要刷卡或对公转账的请报名后与我们联系);
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
QQ:2881989714
Mail:vip@pinggu.org
Tel: 010-68478566
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24