
大数据时代数据分析的必备技能
时间:
初级:2018年7月29-31日(三天)北京, 8月6-8日(三天)上海
高级:2018年7月31-8月2日(三天)北京, 8月8-10日(三天)上海
全程:2018年7月29-8月2日 (五天)北京, 8月6-10日(五天)上海
地点:北京市海淀区厂洼街3号丹龙大厦附近/上海市南京东路培训教室
费用:
初级:3300元 / 2800元 (仅限全日制本科生及硕士研究生优惠价)
高级:3600元 / 3100元 (仅限全日制本科生和硕士研究生优惠价)
全程:6000元 / 5400元 (仅限全日制本科生和硕士研究生优惠价)
(食宿自理)
安排:上午9:00-12:00;下午2:00-5:00;答疑
报名链接:https://www.cda.cn/kecheng/68.html,点击“立即报名”
R简介:
R语言由新西兰奥克兰大学ross ihaka和robert gentleman 开发。R语言是自由软件,可以放心大胆地使用,且具有非常强大的统计分析和作图功能,而且更重要的是R软件具有非常丰富的网上资源,目前R软件有3000多种贡献包,几乎可以实现所有的统计方法,目前大部分的统计学家和计量经济学家都使用R语言,而且越来越多的数据分析实务人员也开始使用R语言。R语言具有简单易学,功能强大,体积小(仅40m左右),完全免费,可自由开发等特点,且R语言和S语言语法基本相同,绝大部分程序是互相兼容的。学习R软件正成为一种趋势。
R软件最优美的地方是它能够修改很多前人编写的包的代码做各种你所需的事情,实际你是站在巨人的肩膀上。——Google首席经济学家Hal Varian
学员对象:
金融、医疗、通讯、咨询、电子商务等领域的数据分析人员、数据挖掘工程师、数据科学家;
高校硕士生、博士生、青年教师等。
1. 让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会基本的编程方法。
2. 以实际案例引入,深入浅出地讲解如何使用R语言进行数据挖掘和机器学习,让学员不仅掌握R语言的使用,更重要的是学会数据挖掘和机器学习的思想、原理和方法。
3. 学完本课程后,使学员基本上可以使用R语言进行实际的数据挖掘工作。尤其学会使用R语言对批量处理的实务数据分析,大大提高工作效率。
专题名称 |
授课内容 |
第1讲(3小时) R语言入门 |
目标:掌握R语言的基本用法 1.R语言介绍 2.编辑软件Rstudio使用 3.R程序包的载入与使用 4.数据对象及运算(向量、矩阵、数组、列表与数据框处理) |
第2讲(3小时) 数据读写 R基本编程 |
目标:掌握用R编写函数和数据的读写 1. R数据读入与读出 (读入txt、xls、SPSS、SAS、stata以及数据库文件) 2.R 函数编写 3.R的条件与循环函数 4.高效编程技巧介绍 |
第3讲(3小时) 数据预处理 探索性分析 |
目标:掌握数据预处理与探索性分析 1.数据预处理 2.缺失值处理 3.随机数生成 4.常用统计方法的蒙特卡洛模拟 5.随机抽样 6.单变量数据分析与作图 7.双变量数据分析与作图 8.多变量数据分析与作图 案例1:统计作图在调查数据中的应用 案例2:统计作图在临床医学中的应用 |
第4讲(3小时) |
4.一元线性回归 5.多元线性回归 6.逐步回归 案例1:广告营销计划案例 案例2:信用卡债务预测案例 案例3:房价预测案例 |
第5讲(3小时) 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第6讲(3小时) 重抽样方法 互动交流讨论 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 互动交流讨论 |
专题名称 |
授课内容 |
第1讲 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第2讲(3小时) 重抽样方法 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 |
第3讲(3小时) 组合预测 |
课程目标:掌握决策树和组合预测方法及其实际应用。 1.CART决策树 2.Bagging 3.随机森林 4.Boosting算法 案例1:棒球运动员薪水预测案例 案例2:心脏病预测案例 案例3:信用卡违约预测案例 |
第4讲(3小时) |
课程目标:掌握支持向量机分类方法 1.间隔分类器 2.支持向量分类器 3.支持向量机 案例1:基因表达数据案例 案例2:股票涨跌方向预测 |
第5讲(3小时) 变量选择与高维数据 |
目标:掌握数据挖掘中高维数据分析方法及其实际应用 1.LASSO 2.SCAD 3.MCP 4.Group LASSO 案例1:基因筛选 案例2: 股票选股 |
第6讲(3小时) 无监督学习 主成分分析 主成分回归 聚类分析 |
目标:掌握无监督学习方法及其应用。 1.主成分分析 2.主成分回归 3.Kmeans聚类分析 4.系统聚类分析 案例1:广告支出主成分分析 案例2:犯罪率主成分分析 案例3:学生考试成绩主成分分析 案例4:客户细分聚类案例 |
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1:点击报名链接,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费(需要刷卡或对公转账的请报名后与我们联系);
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
QQ:2881989714
Mail:vip@pinggu.org
Tel: 010-68478566
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08