
在pandas中,read_csv()是一个非常重要的函数,用于将CSV文件读取为一个Pandas DataFrame对象。该函数有很多参数,其中quoting就是其中之一。
在本文中,我们将深入探讨quoting参数的含义、用法和示例。
quoting参数用于指定在读取CSV文件时应如何处理引号字符。引号字符通常用于将包含逗号或其他分隔符的字符串括起来,以便正确解析CSV文件。然而,在某些情况下,数据本身可能包含引号字符,这可能会导致读取错误。
quoting参数的可选值包括:
假设我们有以下CSV文件test.csv:
Name, Age, "Address" John, 25, "123 Main St, Apt 45" Alice, 30, "456 Maple Ave" Bob, 40, "789 Oak St" "David ""Dave"" Johnson", 50, "101 First St"
我们可以使用read_csv()函数来读取它:
import pandas as pd
df = pd.read_csv("test.csv") print(df)
输出如下:
Name Age Address
0 John 25 123 Main St, Apt 45
1 Alice 30 456 Maple Ave
2 Bob 40 789 Oak St
3 David "Dave" Johnson 50 101 First St
在默认情况下,read_csv()函数使用QUOTE_MINIMAL选项来处理引号字符。这意味着只有在必要时才会加上引号。从输出结果可以看出,引号字符已被正确解析并删除。
现在,让我们尝试使用不同的quoting参数值来读取同一文件。
import pandas as pd # QUOTE_ALL df = pd.read_csv("test.csv", quoting=csv.QUOTE_ALL) print(df) # QUOTE_NONNUMERIC df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONNUMERIC) print(df) # QUOTE_NONE df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONE) print(df)
输出结果如下:
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 "David ""Dave"" Johnson" 50 "101 First St"
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 David "Dave" Johnson 50 "101 First St"
Traceback (most recent call last):
File "", line 1, in File "pandas_libsparsers.pyx", line 605, in pandas._libs.parsers.TextReader.__cinit__
File "pandas_libsparsers.pyx", line 705, in pandas._libs.parsers.TextReader._setup_parser_source
FileNotFoundError: [Errno 2] File test.csv does not exist: 'test.csv'
从输出结果可以看出,当quoting参数的值分别为QUOTE_ALL和QUOTE_NONNUMERIC时,引号字符已经被加上并正确解析。而当quoting参数的值为QUOTE_NONE时,读取CSV文件会失败,因为有一些字段包含分隔符或换行符。
在本文中,我们介绍了pandas中read_csv()函数的quoting参数。这个参数用于指定读取CSV文件时如何处理引号字符。我们还提供了各种quoting参数选项
的示例,并演示了它们的效果。
最后,请注意,quoting参数仅适用于由引号括起来的字段。如果CSV文件中没有引号或只有部分字段被引号括起来,则quoting参数不会生效。在这种情况下,您需要手动解析CSV文件,以确保数据正确读取。
总之,quoting参数是一个非常有用的工具,可以帮助我们正确解析包含引号字符的CSV文件。熟练掌握并正确使用它将使我们的数据处理更加准确和高效。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。
学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18