京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在pandas中,read_csv()是一个非常重要的函数,用于将CSV文件读取为一个Pandas DataFrame对象。该函数有很多参数,其中quoting就是其中之一。
在本文中,我们将深入探讨quoting参数的含义、用法和示例。
quoting参数用于指定在读取CSV文件时应如何处理引号字符。引号字符通常用于将包含逗号或其他分隔符的字符串括起来,以便正确解析CSV文件。然而,在某些情况下,数据本身可能包含引号字符,这可能会导致读取错误。
quoting参数的可选值包括:
假设我们有以下CSV文件test.csv:
Name, Age, "Address" John, 25, "123 Main St, Apt 45" Alice, 30, "456 Maple Ave" Bob, 40, "789 Oak St" "David ""Dave"" Johnson", 50, "101 First St"
我们可以使用read_csv()函数来读取它:
import pandas as pd
df = pd.read_csv("test.csv") print(df)
输出如下:
Name Age Address
0 John 25 123 Main St, Apt 45
1 Alice 30 456 Maple Ave
2 Bob 40 789 Oak St
3 David "Dave" Johnson 50 101 First St
在默认情况下,read_csv()函数使用QUOTE_MINIMAL选项来处理引号字符。这意味着只有在必要时才会加上引号。从输出结果可以看出,引号字符已被正确解析并删除。
现在,让我们尝试使用不同的quoting参数值来读取同一文件。
import pandas as pd # QUOTE_ALL df = pd.read_csv("test.csv", quoting=csv.QUOTE_ALL) print(df) # QUOTE_NONNUMERIC df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONNUMERIC) print(df) # QUOTE_NONE df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONE) print(df)
输出结果如下:
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 "David ""Dave"" Johnson" 50 "101 First St"
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 David "Dave" Johnson 50 "101 First St"
Traceback (most recent call last):
File "", line 1, in File "pandas_libsparsers.pyx", line 605, in pandas._libs.parsers.TextReader.__cinit__
File "pandas_libsparsers.pyx", line 705, in pandas._libs.parsers.TextReader._setup_parser_source
FileNotFoundError: [Errno 2] File test.csv does not exist: 'test.csv'
从输出结果可以看出,当quoting参数的值分别为QUOTE_ALL和QUOTE_NONNUMERIC时,引号字符已经被加上并正确解析。而当quoting参数的值为QUOTE_NONE时,读取CSV文件会失败,因为有一些字段包含分隔符或换行符。
在本文中,我们介绍了pandas中read_csv()函数的quoting参数。这个参数用于指定读取CSV文件时如何处理引号字符。我们还提供了各种quoting参数选项
的示例,并演示了它们的效果。
最后,请注意,quoting参数仅适用于由引号括起来的字段。如果CSV文件中没有引号或只有部分字段被引号括起来,则quoting参数不会生效。在这种情况下,您需要手动解析CSV文件,以确保数据正确读取。
总之,quoting参数是一个非常有用的工具,可以帮助我们正确解析包含引号字符的CSV文件。熟练掌握并正确使用它将使我们的数据处理更加准确和高效。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31