以下使用scikit-learn中数据集进行分享。
如果选用随机森林作为最终的模型,那么找出它的最佳参数可能有1000多种组合的可能,你可以使用使用穷尽的网格搜索(Exhaustive Grid Seaarch)方法,但时间成本将会很高(运行很久...),或者使用随机搜索(Randomized Search)方法,仅分析超参数集合中的子集合。
该例子以手写数据集为例,使用支持向量机的方法对数据进行建模,然后调用scikit-learn中validation_surve方法将模型交叉验证的结果进行可视化。需要注意的是,在使用validation_curve方法时,只能验证一个超参数与模型训练集和验证集得分的关系(即二维的可视化),而不能实现多参数与得分间关系的可视化。以下搜索的参数是gamma,需要给定参数范围,用param_range进行传递,评分策略用scoring参数进行传递。其代码示例如下所示:
print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve X, y = load_digits(return_X_y=True) param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel(r"$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show();
代码中:
X, y = load_digits(return_X_y=True) # 等价于 digits = load_digits() X_digits = digits.data y_digits = digits.target
以下是支持向量机的验证曲线,调节的超参数gamma共有5个值,每一个点的分数是五折交叉验证(cv=5)的均值。
当想看模型多个超参数与模型评分之间的关系时,使用scikit-learn中validation curve就难以实现,因此可以考虑绘制三维坐标图。
主要用plotly的库绘制3D Scatter(3d散点图)。以下的例子使用scikit-learn中的莺尾花的数据集(iris)。以下例子选用随机森林模型(RandomForestRegressor),利用scikit-learn中的GridSearchCV方法调试最佳超参(tuning hyper-parameters),分别设置超参数"n_estimators","max_features","min_samples_split"的参数范围,详见代码如下:
import numpy as np from sklearn.model_selection import validation_curve from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestRegressor from plotly.offline import iplot from plotly.graph_objs as go model = RandomForestRegressor(n_jobs=-1, random_state=2, verbose=2) grid = {'n_estimators': [10,110,200], 'max_features': [0.05, 0.07, 0.09, 0.11, 0.13], 'min_samples_split': [2, 3, 5, 8]} rf_gridsearch = GridSearchCV(estimator=model, param_grid=grid, n_jobs=4, cv=5, verbose=2, return_train_score=True) rf_gridsearch.fit(X, y) # and after some hours... df_gridsearch = pd.DataFrame(rf_gridsearch.cv_results_) trace = go.Scatter3d( x=df_gridsearch['param_max_features'], y=df_gridsearch['param_n_estimators'], z=df_gridsearch['param_min_samples_split'], mode='markers', marker=dict( # size=df_gridsearch.mean_fit_time ** (1 / 3), size = 10, color=df_gridsearch.mean_test_score, opacity=0.99, colorscale='Viridis', colorbar=dict(title = 'Test score'), line=dict(color='rgb(140, 140, 170)'), ), text=df_gridsearch.Text, hoverinfo='text' ) data = [trace] layout = go.Layout( title='3D visualization of the grid search results', margin=dict( l=30, r=30, b=30, t=30 ), scene = dict( xaxis = dict( title='max_features', nticks=10 ), yaxis = dict( title='n_estimators', ), zaxis = dict( title='min_samples_split', ), ), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
其运行结果如果,是一个三维散点图(3D Scatter)。
可以看到颜色越浅,分数越高。n_estimators(子估计器)越多,分数越高,max_features的变化对模型分数的影响较小,在图中看不到变化,min_samples_split的个数并不是越高越好,但与模型分数并不呈单调关系,在min_samples_split取2时(此时,其它条件不变),模型分数最高。
除了使用scikit-learn中validation curve绘制超参数与得分的可视化,还可以利用seaborn库中heatmap方法来实现两个超参数之间的关系图,如下代码示例:
import seaborn as sns title = '''Maximum R2 score on test set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_test_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_test.png", dpi = 300);
import seaborn as sns title = '''Maximum R2 score on train set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_train_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_train.png", dpi = 300);
max_features和min_samples与模型得分关系的可视化如下图所示(分别为网格搜索中测试集和训练集的得分):
由于一般人很难迅速的在大量数据中找到隐藏的关系,因此,可以考虑绘图,将数据关系以图表的形式,清晰的显现出来。
综上,当关注单个超参数的学习曲线时,可以使用scikit-learn中validation curve,找到拐点,作为模型的最佳参数。
当关注两个超参数的共同变化对模型分数的影响时,可以使用seaborn库中的heatmap方法,制作“热图”,以找到超参数协同变化对分数影响的趋势。
当关注三个参数的协同变化与模型得分的关系时,可以使用poltly库中的iplot和go方法,绘制3d散点图(3D Scatter),将其协同变化对模型分数的影响展现在高维图中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03