京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类就是将某个数据集中的样本按照之间的某些区别划分为若干个不相交的子集,我们把每个子集称为一个“簇”。划分完成后,每个簇都可能对应着某一个类别;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。
有关聚类的算法很多,下面这张表格引用自Scikit-learn 官方文档,从这张表中可以看到各个聚类算法之间的不同以及对不同数据及划分时的匹配程度,和优劣性。我们在选择聚类算法的时候,首先一定要熟悉自己的数据,大概了解自己的数据是怎样的一个分布和结构。这样,有利于我们选择合适的算法,从而得到优秀的聚类结果。这篇文章仅仅介绍K-means聚类算法,以及它的推广版K-mean++算法。
k-means算法是使用最广泛的聚类算法之一。聚类的目的是把相似的样本聚到一起,把不相似的样本分开。对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。
K-means算法旨在选择一个质心, 能够最小化惯性或簇内平方和的标准:
$$\sum{i=0}^{n} \min _{\mu{j} \in C}\left(\left|x{i}-\mu{j}\right|^{2}\right)$$
K-means算法原理分析
k-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据它们的属性分为k个簇以便使得所获得的簇满足:同一簇中的对象相似度较高;而不同簇中的对象相似度较小。 k-means算法的基本过程如下所示:
下图是Scikit-learn具体实现代码:
print(__doc__) # Author: Phil Roth# License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clustersy_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed datatransformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)plt.title("Anisotropicly Distributed Blobs") # Different varianceX_varied, y_varied = make_blobs(n_samples=n_samples,cluster_std=[1.0, 2.5, 0.5],random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobsX_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))y_pred = KMeans(n_clusters=3,random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1],c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
K-means算法的优缺点
优点:简单,易于理解和实现;收敛快,一般仅需5-10次迭代即可,高效
缺点:
K-means算法的优缺点
优点:简单,易于理解和实现;收敛快,一般仅需5-10次迭代即可,高效
缺点:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27