京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		作者 | George Seif
来源 | 中国统计网
本文讲述了数据分析师应当了解的五个统计基本概念:统计特征、概率分布、降维、过采样/欠采样、贝叶斯统计方法。
从高的角度来看,统计学是一种利用数学理论来进行数据分析的技术。象柱状图这种基本的可视化形式,会给你更加全面的信息。但是,通过统计学我们可以以更富有信息驱动力和针对性的方式对数据进行操作。所涉及的数学理论帮助我们形成数据的具体结论,而不仅仅是猜测。
利用统计学,我们可以更深入、更细致地观察数据是如何进行精确组织的,并且基于这种组织结构,如何能够以最佳的形式来应用其它相关的技术以获取更多的信息。今天,我们来看看数据分析师需要掌握的5个基本的统计学概念,以及如何有效地进行应用。
01
特征统计
特征统计可能是数据科学中最常用的统计学概念。它是你在研究数据集时经常使用的统计技术,包括偏差、方差、平均值、中位数、百分数等等。理解特征统计并且在代码中实现都是非常容易的。请看下图:
上图中,中间的直线表示数据的中位数。中位数用在平均值上,因为它对异常值更具有鲁棒性。第一个四分位数本质上是第二十五百分位数,即数据中的25%要低于该值。第三个四分位数是第七十五百分位数,即数据中的75%要低于该值。而最大值和最小值表示该数据范围的上下两端。
箱形图很好地说明了基本统计特征的作用:
02
我们可以将概率定义为一些事件将要发生的可能性大小,以百分数来表示。在数据科学领域中,这通常被量化到0到1的区间范围内,其中0表示事件确定不会发生,而1表示事件确定会发生。那么,概率分布就是表示所有可能值出现的几率的函数。请看下图:
常见的概率分布,均匀分布(上)、正态分布(中间)、泊松分布(下):
如果遇到一个高斯分布,那么我们知道有很多算法,在默认情况下高思分布将会被执行地很好,因此首先应该找到那些算法。如果是泊松分布,我们必须要特别谨慎,选择一个在空间扩展上对变化要有很好鲁棒性的算法。
03
降维这个术语可以很直观的理解,意思是降低一个数据集的维数。在数据科学中,这是特征变量的数量。请看下图:
上图中的立方体表示我们的数据集,它有3个维度,总共1000个点。以现在的计算能力,计算1000个点很容易,但如果更大的规模,就会遇到麻烦了。然而,仅仅从二维的角度来看我们的数据,比如从立方体一侧的角度,可以看到划分所有的颜色是很容易的。通过降维,我们将3D数据展现到2D平面上,这有效地把我们需要计算的点的数量减少到100个,大大节省了计算量。
另一种方式是我们可以通过特征剪枝来减少维数。利用这种方法,我们删除任何所看到的特征对分析都不重要。例如,在研究数据集之后,我们可能会发现,在10个特征中,有7个特征与输出具有很高的相关性,而其它3个则具有非常低的相关性。那么,这3个低相关性的特征可能不值得计算,我们可能只是能在不影响输出的情况下将它们从分析中去掉。
用于降维的最常见的统计技术是PCA,它本质上创建了特征的向量表示,表明了它们对输出的重要性,即相关性。PCA可以用来进行上述两种降维方式的操作。
04
过采样和欠采样
过采样和欠采样是用于分类问题的技术。例如,我们有1种分类的2000个样本,但第2种分类只有200个样本。这将抛开我们尝试和使用的许多机器学习技术来给数据建模并进行预测。那么,过采样和欠采样可以应对这种情况。请看下图:
在上面图中的左右两侧,蓝色分类比橙色分类有更多的样本。在这种情况下,我们有2个预处理选择,可以帮助机器学习模型进行训练。
欠采样意味着我们将只从样本多的分类中选择一些数据,而尽量多的使用样本少的分类样本。这种选择应该是为了保持分类的概率分布。我们只是通过更少的抽样来让数据集更均衡。
过采样意味着我们将要创建少数分类的副本,以便具有与多数分类相同的样本数量。副本将被制作成保持少数分类的分布。我们只是在没有获得更多数据的情况下让数据集更加均衡。
05
完全理解为什么在我们使用贝叶斯统计的时候,要求首先理解频率统计失败的地方。大多数人在听到“概率”这个词的时候,频率统计是首先想到的统计类型。它涉及应用一些数学理论来分析事件发生的概率,明确地说,我们唯一计算的数据是先验数据(prior data)。
假设我给了你一个骰子,问你掷出6点的几率是多少,大多数人都会说是六分之一。
但是,如果有人给你个特定的骰子总能掷出6个点呢?因为频率分析仅仅考虑之前的数据,而给你作弊的骰子的因素并没有被考虑进去。
贝叶斯统计确实考虑了这一点,我们可以通过贝叶斯法则来进行说明:
在方程中的概率P(H)基本上是我们的频率分析,给定之前的关于事件发生概率的数据。方程中的P(E|H)称为可能性,根据频率分析得到的信息,实质上是现象正确的概率。例如,如果你要掷骰子10000次,并且前1000次全部掷出了6个点,那么你会非常自信地认为是骰子作弊了。
如果频率分析做的非常好的话,那么我们会非常自信地确定,猜测6个点是正确的。同时,如果骰子作弊是真的,或者不是基于其自身的先验概率和频率分析的,我们也会考虑作弊的因素。正如你从方程式中看到的,贝叶斯统计把一切因素都考虑在内了。当你觉得之前的数据不能很好地代表未来的数据和结果的时候,就应该使用贝叶斯统计方法。
								推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
							
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28