京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | AlfredWu
来源 | Alfred数据室
最近有很多人在问,我是如何收集网络的数据,如何进行数据处理、数据分析以及可视化呈现的。
也有人问的更具体,关于Python数据分析的一些问题。到底应该怎么学?如何快速入门,以及技术和业务之间的瓶颈如何突破?
因为深度的数据分析往往可以看到事情的本质,而这又是一项在任何情况下都超级加分的技能。总结了一些经验,希望能够给还没入门、或者入门之后就遇到瓶颈的新手一些建议。主要是关于如何系统地进行学习规划,以及可以避免的一些坑。
有的同学看到数据分析几个字,就马上开始Python函数+控制语句、R语言和ggplot库……上来一顿骚操作,还没入门就放弃了。
这就是需求不明确导致的,当然学习方式也值得商榷,那到底数据分析需要什么样的技能呢?这里作为例子,从招聘网站上找了几个数据分析的岗位,我们来看看具体的要求是怎样的。
其实企业对数据分析师的基础技能需求差别不大,可总结如下:
看上去很简单呀,对吧,但其实你把每个技能拆分开来,都是一个不小的知识体系。如果我们按照数据分析的流程来细分的话,每个部分应该掌握的技能,大概是这样的:
那对于这个技能体系,应该如何进行技能的训练呢?先后顺序是什么?哪些地方可能出现困难和瓶颈?
按数据分析的流程的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
- ❶ -
数据获取:爬虫与公开数据
数据是产生价值的原材料,这也是数据分析项目的第一步。
通常我是通过爬虫获取相关数据的,一来数据有很高的时效性,二来数据的来源可以得到保证,毕竟网上的信息是异常丰富的。
这些分布在网上零散的信息,通过爬取整合之后,就有比较高的分析价值。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某个事件、某类人群进行分析。
在爬虫之前需要先了解一些 Python 的基础知识:数据类型(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests等)实现网页爬虫。如果是初学,建议从requests+xpath开始。
当然,并不是说公开数据就没用了,在进行分析的时候,需要一些历史数据进行对比,需要一定的行业标准进行参考的时候,公开数据的价值就体现出来了。
一些科研机构、企业、政府会开放一些数据,还有一些行业研究报告、他人的调查结果,都可以成为你的数据来源。这些数据集通常比较完善、质量相对较高。
- ❷ -
数据存取:SQL语言
我并不是每次都会用到数据库,但很多时候这确实是做数据分析项目的必备技能,包括求职就业,也是必选项。
通常数据库的使用能够让数据存储、管理更方便,同时也能提高数据提取和使用的效率,特别是在数据上了一定的量级之后,谁用谁知道。
大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。需要掌握以下技能:
SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。
- ❸ -
数据处理:Pandas/Numpy
爬回来的数据通常是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
那么我们需要用相应的方法去处理,比如重复数据,是保留还是删除;比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
对于数据预处理,学会 pandas/Numpy (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
数据清洗通常被视为脏活,但事实上这步非常重要,这直接决定了你的分析结论的准确性,决定你的项目是否能顺利进行下去。
- ❹ -
数据分析与可视化
这个是从数据中发现信息、挖掘价值的过程,大多数的结论在这个步骤产生,主要做两件事情。
一是对于既定的数据分析主题进行拆解,评估需要从哪些维度进行分析,提取哪些数据,这个步骤很大程度上来源于经验或者对于具体事务的理解;
二是通过探索数据分布的规律、数据的特征,发现从表面看不到的信息,完成这个流程主要是通过数据本身进行探索。
前者对应的是描述性的数据分析,主要考虑数据的指标,看从不同的角度去描述数据能够得出哪些结论。
这个地方就需要对统计学的相关知识有一定的了解,比如:
后者则是探索型的数据分析,主要通过绘制数据的分布图形,来观察数据的分布规律,从而提取隐藏的某些信息。
这里就需要对掌握可视化的技能,Python中的Matplotlib/Seaborn都可以完成可视化的工作。可视化既是探索性分析的工具,也可以输出最终结果呈现的图形。
当然,还有一种是预测型的数据分析,需要构建模型来预测未来数据,我在推文中用的比较少,但在企业中应用非常多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27