
作者 | AlfredWu
来源 | Alfred数据室
最近有很多人在问,我是如何收集网络的数据,如何进行数据处理、数据分析以及可视化呈现的。
也有人问的更具体,关于Python数据分析的一些问题。到底应该怎么学?如何快速入门,以及技术和业务之间的瓶颈如何突破?
因为深度的数据分析往往可以看到事情的本质,而这又是一项在任何情况下都超级加分的技能。总结了一些经验,希望能够给还没入门、或者入门之后就遇到瓶颈的新手一些建议。主要是关于如何系统地进行学习规划,以及可以避免的一些坑。
有的同学看到数据分析几个字,就马上开始Python函数+控制语句、R语言和ggplot库……上来一顿骚操作,还没入门就放弃了。
这就是需求不明确导致的,当然学习方式也值得商榷,那到底数据分析需要什么样的技能呢?这里作为例子,从招聘网站上找了几个数据分析的岗位,我们来看看具体的要求是怎样的。
其实企业对数据分析师的基础技能需求差别不大,可总结如下:
看上去很简单呀,对吧,但其实你把每个技能拆分开来,都是一个不小的知识体系。如果我们按照数据分析的流程来细分的话,每个部分应该掌握的技能,大概是这样的:
那对于这个技能体系,应该如何进行技能的训练呢?先后顺序是什么?哪些地方可能出现困难和瓶颈?
按数据分析的流程的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
- ❶ -
数据获取:爬虫与公开数据
数据是产生价值的原材料,这也是数据分析项目的第一步。
通常我是通过爬虫获取相关数据的,一来数据有很高的时效性,二来数据的来源可以得到保证,毕竟网上的信息是异常丰富的。
这些分布在网上零散的信息,通过爬取整合之后,就有比较高的分析价值。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某个事件、某类人群进行分析。
在爬虫之前需要先了解一些 Python 的基础知识:数据类型(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests等)实现网页爬虫。如果是初学,建议从requests+xpath开始。
当然,并不是说公开数据就没用了,在进行分析的时候,需要一些历史数据进行对比,需要一定的行业标准进行参考的时候,公开数据的价值就体现出来了。
一些科研机构、企业、政府会开放一些数据,还有一些行业研究报告、他人的调查结果,都可以成为你的数据来源。这些数据集通常比较完善、质量相对较高。
- ❷ -
数据存取:SQL语言
我并不是每次都会用到数据库,但很多时候这确实是做数据分析项目的必备技能,包括求职就业,也是必选项。
通常数据库的使用能够让数据存储、管理更方便,同时也能提高数据提取和使用的效率,特别是在数据上了一定的量级之后,谁用谁知道。
大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。需要掌握以下技能:
SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。
- ❸ -
数据处理:Pandas/Numpy
爬回来的数据通常是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
那么我们需要用相应的方法去处理,比如重复数据,是保留还是删除;比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
对于数据预处理,学会 pandas/Numpy (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
数据清洗通常被视为脏活,但事实上这步非常重要,这直接决定了你的分析结论的准确性,决定你的项目是否能顺利进行下去。
- ❹ -
数据分析与可视化
这个是从数据中发现信息、挖掘价值的过程,大多数的结论在这个步骤产生,主要做两件事情。
一是对于既定的数据分析主题进行拆解,评估需要从哪些维度进行分析,提取哪些数据,这个步骤很大程度上来源于经验或者对于具体事务的理解;
二是通过探索数据分布的规律、数据的特征,发现从表面看不到的信息,完成这个流程主要是通过数据本身进行探索。
前者对应的是描述性的数据分析,主要考虑数据的指标,看从不同的角度去描述数据能够得出哪些结论。
这个地方就需要对统计学的相关知识有一定的了解,比如:
后者则是探索型的数据分析,主要通过绘制数据的分布图形,来观察数据的分布规律,从而提取隐藏的某些信息。
这里就需要对掌握可视化的技能,Python中的Matplotlib/Seaborn都可以完成可视化的工作。可视化既是探索性分析的工具,也可以输出最终结果呈现的图形。
当然,还有一种是预测型的数据分析,需要构建模型来预测未来数据,我在推文中用的比较少,但在企业中应用非常多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14