京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Alex Adam
来源 | 机器之心
很多人都大概了解对抗样本是什么:在数据中加入人眼不可察觉的扰动,使得模型对数据的标签预测发生混淆和错误。但是,这句话背后的技术细节是什么?怎样才能确保生成的对抗样本符合这样的定义?本文深入解析了对抗样本背后的数学定义,并帮助读者重新理解对抗样本的定义。
对抗样本是各种机器学习系统需要克服的一大障碍。对抗样本的存在表明模型倾向于依赖不可靠的特征来最大化性能,如果特征受到干扰,那么将造成模型误分类,可能导致灾难性的后果。对抗样本的非正式定义:以人类不可感知的方式对输入进行修改,使得修改后的输入能够被机器学习系统误分类,尽管原始输入是被正确分类的。这一修改后的输入即被称为对抗样本。下图阐明了这一概念:
原始图像(左图),对抗噪声(中图),扰动后的图片即对抗样本(右图)被错误地分类为数字 2
对抗样本的正式定义如下所示:
对抗样本的定义
其中 L 是我们试图最大化的损失函数,x_orig 是原始图像,是扰动,y 是真实标签,所选的ε用于确保扰动后的图像看上去没有那么杂乱,并且对于人类来说仍然像是原始类别的图片。
一些攻击,如 FGS,IGS 和 PGD 都使用 L-∞范数来约束扰动图像和原始图像之间的距离。在这篇文章中,我们将探讨对于 MNIST 数据集选择ε的难点。我们也将看看最近有关不依赖于在原始图像上进行扰动而生成对抗样本的技术,探究这样生成的图片是否满足对抗样本的定义。
MNIST 图像距离分析
让我们首先简单分析一下相同类别图像以及不同类别图像之间的平均距离。也许这些距离能够帮助我们以一种更量化更客观的方式选择ε。我博客上有一个包含这一分析的 Jupyter notebook (http://alexadam.ca/ml/2019/09/05/adversarial-examples-rethinking-the-definition.html)。
我们从每个类别中随机采样了 100 张图片,在不同的范数下计算两两图像距离的平均值。这里只展示 L-2 范数的结果以避免混乱,同时也因为 L-∞范数的热力图在每个 cell 中都是 1,没有提供什么有用的信息。
L-2 范数训练集距离
一个合理的假设是处于热力图对角线上的元素值(类内图像的距离)应该要比同一行/列中的非对角线上的元素(类间图像距离)小。然而,上图的结果中数字 2 的类内距离 10.1 大于数字类别 2 与数字类别 1 的类间距离 9.8,数字类别 8 的类内距离 9.4 大于数字类别 8 与 1 之间的距离 9.3。这起初让人惊讶,但它只是表明,对于一个给定的数字,相比切换成另一个类别的数字,样式上的变化可能会可能会造成更多像素上的差异。可以认为对于每一个数字,有一个不变的像素集,它不会随图片而改变,当两个数字的不变集高度重合时,像上图那种意料之外的结果就有可能发生。
选择ε
当谈到选择ε的时候,这一切意味着什么呢?当使用 L-∞范数时,ε最常见的值是 0.3,对于 L-2 范数而言一个比较大的值是 4.5 。对于 L-∞范数,如果我们考虑最极端的值ε=1.0,我们将无法控制扰动图像的真实类别,并可能最终生成一个使得人类和图像分类模型都误识别为其它类别的图像。这也允许我们在训练集和测试集之间任意篡改图像 x』 = rx_train * (1-r)x_test,如果我们的模型恰好错误分类了 x_test,那么该图像将被标记为对抗样本。这里有很多限制条件必须要满足:
根据观察,(1) 通常暗含 (2)。ε=0.3 当然满足 (2),因为所有图像的 L-∞距离接近 1.0。让我们看看如果我们生成如下的结合了两个类别的图像将会发生什么。
在 L-∞距离约束下的均值图像
将原始图像和精心扰动的图像之间的 L-∞距离限制到ε,但是任意一个人类观察者都能轻易地发现两张图之间的区别,如下图所示:
与原始图像的 L-∞距离在ε=0.3 之内精心制作的扰动图像
很明显,最右边的图像有一些不足。事实上,如果没有被告知这是一张数字 0 和数字 1 图片的组合,有的人可能会说它只是一个抽象的符号。因此,用这样一个简单的例子,我们已经表明 ε=0.3 违反了条件 (1)。即使给一个更小的值,比如ε=0.2,也会得到类似的结果。MNIST 让我们轻易地识别出扰动的像素。在许多情况下,通过简单检查背景像素是否修改来为对抗样本创建检测机制是微不足道的。如果攻击者知道了这种检测机制,就能够绕过它。那我们要如何选择ε呢?
这里给出一个对每张图片并不使用相同ε的例子。对于一些类别,数字本身围成的框内是否发生了像素的变化更容易被发现,就像上图中的 0 那样。对于这种类别,ε应该设置成一个更小的值。
此外,对于像 L-2 或者 L-∞这样的典型范数用于计算图像距离时是没有包含图像的语义相似性的。如果能够在输入空间中给出图像间的语义相似度,那么构造一个简单的 KNN 图像分类器就能干掉卷积神经网络在过去 7 年来的进步。对于这个问题,可能的解决方案是使用度量学习(metric learning)。通过学习嵌入,这些嵌入之间的 L-2 或者 L-∞距离包含语义相似性,那么我们就可以在这个空间而不是输入空间中调整ε。
还有种这样的技术叫做三胞胎网络 (triplet networks)。三胞胎网络通过同时将 3 张图片一次传递到三个相同的嵌入网络并行运行。类别 y 的 anchor 通过时,会伴随着一个同类别的正样本和一个不同类别 y』的负样本。损失函数将确保 anchor 和正样本之间的距离至少比 anchor 和负样本之间的距离小。
三胞胎网络示意
使用像三胞胎网络这样的度量学习技术仍旧需要手动实验验证以确保ε没有过大以至于类别发生改变。此外,我们必须考虑条件 (2),我们不能利用扰动使得我们数据集中的一张图像被分为另外一张相同类别的图像。像 PGD 这样的攻击方法是在损失函数的梯度方向迭代地移动以增加损失,然后将结果图像映射到满足原始图像距离约束的输入子空间。不是在输入空间中做这一映射,而是使用我们的度量学习算法在嵌入空间上完成。
生成式对抗样本
有篇非常酷的论文介绍了一种新的制作对抗样本的方法。不是使用精心制作的对抗性噪声扰动已有的图片,而是使用 GAN 从头生成能够愚弄目标模型的图片。
具体来说,他们使用一个辅助分类器 GAN(AC-GAN),能够对图像类别进行调节,以便控制所生成图像的类别。这产生了「无约束对抗样本」,因为从头生成的图像没有距离可供约束。
然而,这并不满足先前提及的标准 (1) 或 (2)。尽管他们的方法很有用,也允许模型调试和通过生成新的能使模型失败的图片进行数据增强,但他们的分析将泛化性能和对抗的鲁棒性看作同一件事。为了恰当地分析模型的鲁棒性,我们需要能够分开泛化性能和对抗鲁棒性两个指标,因为它们彼此不一致 。因此,尽管抛弃对抗样本的基于扰动的定义是十分诱人的,但是现在它们是唯一能够以独立的、非混淆的方式研究对抗鲁棒性的方法。
总结
对抗样本的当前定义对于像 MNIST 这样的数据集来说存在些微的缺陷。尽管对于 ImageNet 这样的数据集来说更有意义,因为向它添加扰动更难被人注意到,也不会使得图片看上去像是不同类别的奇怪组合。
对于每张图片或类别使用相同的阈值ε并不是一个好的打算,因为很容易就能检测出特定类别图像上的噪声。图像是一种对于人类而言很轻易就能分析和评判出是否有可疑痕迹的数据类型。然而,在许多领域里的数据是以数字的抽象向量形式出现的,这些向量很难理解和可视化。在这些领域中定义什么是对抗样本可能会超出我们的想象极限,因为我们本来就不理解原始数据。在这样的情况下,用定量的方法选取ε是十分必要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16