
作者|大鹏
来源|Python数据科学
现在的职场竞争越来越激烈,不学上一两门新技能,保持自己知识更新,很容易被年轻后辈超越。有些人选择学一门外语,有些人选择学习职场上为人处事的能力。
如果你的工作需要和数据打交道,相信我,Python一定能成为你升职加薪的敲门砖。
为什么?
因为高效。
我们来看一份年薪24w-48w的高级数据分析师的招聘信息,以下4点能力是用人单位较为看重的:
再仔细梳理,你会发现即便不是数据分析师,具备这4项能力都能在职场中为自己加分。
试想一下,一场电商大促结束复盘,别人花大把时间梳理数据,而你有更多精力分析定位问题,还能做出更好看的交互图表。业务分析,你拉大量的数据,手动打标签做图表,都不如几行Python代码来的高效。
我们来一条条解析。
01
业务洞察力和执行力
业务洞察力和执行力,说的通俗点, 就是如何从海量信息中获取有效信息。
Python可以利用MySQLdb库连接数据库,可以利用pandas和matplotlib进行清洗和分析,可以利用pyecharts进行交互可视化,可以利用numpy和sklearn进行建模,甚至可以利用pyinstaller打包工作流交给同事,共同提效……
调用matplotlib库用几行代码快速整理数据并出图
当工具上更高效,就有更多的时间去深入了解和分析业务。
02
沟通能力
Python还可以提升沟通力?
数据分析师属于业务端工作,长期接触公司项目与客户需求。而技术端一般只管产品功能实现。掌握Python的分析师,会更了解业务端和技术端双方的痛点在哪里。
03
Python和SQL
和庞大的数据打交道,只会Excel是不经济的,所以大部分数据分析师工作都要求SQL技能。
SQL语言入门很简单,掌握了存取数据以及基本的数据清洗函数之后,就可以着手工作了。初级的分析师可能会取数到本地再做分析,高效的数据分析师则会使用Python连接数据库进行分析,让工作流变得更高效。
使用Python工具库pymongo进行数据库文档查询
04
主动性和逻辑性
主动性和逻辑性是个玄学,职场人都会说自己有主动性,但问题是老板怎样才能感受到你的主动性呢?比如……
使用Python写小工具,几分钟完成912个Excel表格合并
总结来说,要当一名“高级”数据分析师,一直吃老本是不可能的。只有不断学习不断思考才能做到顶尖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12