京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上海57期数据分析就业班学员
姓名:谭同学
毕业院校:湖南大学
专业:软件工程
入职信息:上海某汽车公司,数据分析师,薪资保密,上海
各位同学大家好,很荣幸接到李智老师的邀请,分享一些个人的收获给大家。以下是本人面试完,到最终拿到期望offer后的一些心得体会,希望可以给大家提供一些帮助!
根据本人的面试经验,本文主要做些课堂补充。
数据岗位大体分为两类:1业务数据分析;2数据建模
1、 业务数据分析技能:Tableau+数据思维
数据思维:漏斗、留存、指标体系都是最为基本的,想要高薪需要具体业务的分析和推进思路,这方面我至今不到火候,就不班门弄釜了
2、 数据建模
个人把模型方面分为三部分
2.1第一部分:监督算法模型主力:回归模型+决策树+集成算法模型
金融岗爱问
2.1.1回归模型
损失函数L1,L2及其区别、逻辑回归公式推导
2.1.2集成算法模型(风投爱问)
随机森林、GBDT、XGB,特点+意义
2.2第二部分:监督补充sank(svm+ann+nb+knn)
SVM公式推导
2.3第三部分:非监督算法模型:关联+聚类
2.3.1关联
apriori可以拓展到推荐模型,结合协同过滤知识点一并交流(市场对推荐模型有偏好,问得多)
2.3.2聚类
kmeans的算法步骤:迭代地确定簇心,调整簇数据,直至簇心稳定
kmeans分箱是非监督分箱的一种
3、特征工程
处理缺失、异常值、共线性、数据不平衡性、编码、归一化、分箱、降维。。。。
缺失值:83法,小于30%填补+大于80%考虑删除+之间可独立成一项
异常值:盖帽法
不平衡性:过采样+欠采样(各自的处理方案最好心里有数,可以适当做一定的拓展阅读)
归一化:提高模型收敛速度和精度
分箱:分为监督分箱+非监督分箱(分别有哪些,心里要有数)
降维:分为线性降维+非线性降维(分别有哪些,心里要有数)
按上述展开方案,特征工程这块就能聊很久,可使简历上的项目生动形象
4、相关问题
这些算是我的直接面经吧,答案都在课堂+自我拓展里,准备不到位免不了到场卡壳
4.1特征工程耗时70%,你们都做了什么?
4.2写一下逻辑回归的推导公式
4.3写一下SVM的推导公式
4.4逻辑回归交叉熵公式?
4.5决策树熵增益公式?GINI公式?
4.6评分卡
4.6.1为什么要对原始数据进行卡方分箱?不可以直接使用原始数据吗?
4.6.2降维的方法有哪些?你知道PCA的原理吗?
4.7写一下apriori支持度、置信度、提升度公式?你还知道其他指标吗?
4.8bagging、boosting的区别?
最后,非常感谢CDA的这个学习平台,学习期间收获颇多,同时也感谢同学和各位老师们提供的帮助,希望CDA越来越好,可以培育出更多的优秀分析师!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07