京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上海57期CDA数据分析就业班学员
毕业院校:德州学院
专业:光电应用技术
入职信息:环海学院,数据分析师,上海
来cda是前同事介绍,因为他就是从cda出去的,我为什么来呢,是因为之前的公司是创业公司,不幸解散了,所以又得重新找工作,那时候是元旦,一直到过年我都没有找工作,年后回来,想了想还是找和之前工作一样的吗,复制粘贴复制粘贴工作,完全不想去找,我就想起了,和我同部门的那个同事,数据分析,会的简直不是比我高一个lever,Python爬虫,机器建模,以前没了解到的那些好像他都会,然后就准备找他问问在哪里学的,他给我推荐了cda,问完就去校区报名了。
正式学习中,发现就连Excel也是能玩出花来的,功能非常强大,三个月的时间说实话很紧很紧,因为要学的东西实在是太多,完全消化也是很难的,有些公式知道就可以,不需要完全都背下来记住,记住关键字,主要用作什么,以后需要再去网上找都可以,学东西一定要抓住重点,全部抓的话,费精力,重要的也记不好,在课上一定要跟老师走,回放是用来温习的,不要以为有回放,课上就不认真听了,有些不懂的可以当场问,效果会更好。
课下一定要复习和预习,因为一天全是满课,讲的知识量很大,我们同学大多都是转行,之前并没有类似学习的经历,所以很多东西并不能当堂就理解并记住,晚上在校区上自习的话有些老师还在教室,可以及时问,及时解答,也可以问老师一些,目前行业内的问题,老师大多数也在其他公司就职或者有自己的公司,所以对目前行业内的见解和看法对于我们之后的就职也有很大帮助。
预习当然也很重要,报名后cda会给一些预习视频,是往期老师上课的一些视频,课前也串一串老师要讲的知识点,对哪些不明白的记一下,课上着重听。
关于就业,大家最关心的就是薪资了,我的薪资相对于其他同学,应该算是最低的,因为当时找工作时家人和我自己的想法就是先入行,薪资没那么重要,当然这样想现在认为也不是完全错,薪资当然越高越好了,看到高薪的同学也替他们开心的,我本人认为应聘时最重要的就是自信,面试前多做一些准备,把之前的工作经历试试结合数据分析应该怎样做,我来的这家公司虽然工资低,但这个氛围我是很喜欢的,因为我的直属领导是个很爱学习的人,并带着大家一起学,我刚入职的时候,他们正在学习数据分析,是整个部门包括策划,设计,运营,开发都在学数据分析,那时候的学习快接近尾声了,我就参加了后面的两到三课,每周会对这个学习做一个总结分享,最后毕业,他们以全优毕业,算是很不错的了,当时就是这种学习氛围感觉很喜欢,所以对高薪同学也会有些羡慕,但我觉得自己的运气也还算不错。
业务这方面,必须要了解,要不然分析出来的就只是简单的数据,我每天早上会去的早一些,和策划,开发聊一聊公司的业务,哪些因素会影响数据波动,一些客观因素也许对某一天的数据波动非常重要但可能是我们想不到的,刚开始看看以前的数据报表,对某周某月的数据变化,大致了解一下,感觉异常的就多问问同事,在别人不忙的情况下最好。
对于数据分析,本人认为很重要的就是数据分析思维,对于维度的拆解,在工作中遇到的问题大多也是按这种,还有就是不要有太大压力,因为大多的数据分析并不是你的一个分析结果直接导致公司的收益增减,起初先是做一个监控,有一定数据之后,可以做分群,比如薅羊毛客户,风险客户之类可能我到的是一个小公司,是这种模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22