京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上海57期CDA数据分析就业班学员
毕业院校:德州学院
专业:光电应用技术
入职信息:环海学院,数据分析师,上海
来cda是前同事介绍,因为他就是从cda出去的,我为什么来呢,是因为之前的公司是创业公司,不幸解散了,所以又得重新找工作,那时候是元旦,一直到过年我都没有找工作,年后回来,想了想还是找和之前工作一样的吗,复制粘贴复制粘贴工作,完全不想去找,我就想起了,和我同部门的那个同事,数据分析,会的简直不是比我高一个lever,Python爬虫,机器建模,以前没了解到的那些好像他都会,然后就准备找他问问在哪里学的,他给我推荐了cda,问完就去校区报名了。
正式学习中,发现就连Excel也是能玩出花来的,功能非常强大,三个月的时间说实话很紧很紧,因为要学的东西实在是太多,完全消化也是很难的,有些公式知道就可以,不需要完全都背下来记住,记住关键字,主要用作什么,以后需要再去网上找都可以,学东西一定要抓住重点,全部抓的话,费精力,重要的也记不好,在课上一定要跟老师走,回放是用来温习的,不要以为有回放,课上就不认真听了,有些不懂的可以当场问,效果会更好。
课下一定要复习和预习,因为一天全是满课,讲的知识量很大,我们同学大多都是转行,之前并没有类似学习的经历,所以很多东西并不能当堂就理解并记住,晚上在校区上自习的话有些老师还在教室,可以及时问,及时解答,也可以问老师一些,目前行业内的问题,老师大多数也在其他公司就职或者有自己的公司,所以对目前行业内的见解和看法对于我们之后的就职也有很大帮助。
预习当然也很重要,报名后cda会给一些预习视频,是往期老师上课的一些视频,课前也串一串老师要讲的知识点,对哪些不明白的记一下,课上着重听。
关于就业,大家最关心的就是薪资了,我的薪资相对于其他同学,应该算是最低的,因为当时找工作时家人和我自己的想法就是先入行,薪资没那么重要,当然这样想现在认为也不是完全错,薪资当然越高越好了,看到高薪的同学也替他们开心的,我本人认为应聘时最重要的就是自信,面试前多做一些准备,把之前的工作经历试试结合数据分析应该怎样做,我来的这家公司虽然工资低,但这个氛围我是很喜欢的,因为我的直属领导是个很爱学习的人,并带着大家一起学,我刚入职的时候,他们正在学习数据分析,是整个部门包括策划,设计,运营,开发都在学数据分析,那时候的学习快接近尾声了,我就参加了后面的两到三课,每周会对这个学习做一个总结分享,最后毕业,他们以全优毕业,算是很不错的了,当时就是这种学习氛围感觉很喜欢,所以对高薪同学也会有些羡慕,但我觉得自己的运气也还算不错。
业务这方面,必须要了解,要不然分析出来的就只是简单的数据,我每天早上会去的早一些,和策划,开发聊一聊公司的业务,哪些因素会影响数据波动,一些客观因素也许对某一天的数据波动非常重要但可能是我们想不到的,刚开始看看以前的数据报表,对某周某月的数据变化,大致了解一下,感觉异常的就多问问同事,在别人不忙的情况下最好。
对于数据分析,本人认为很重要的就是数据分析思维,对于维度的拆解,在工作中遇到的问题大多也是按这种,还有就是不要有太大压力,因为大多的数据分析并不是你的一个分析结果直接导致公司的收益增减,起初先是做一个监控,有一定数据之后,可以做分群,比如薅羊毛客户,风险客户之类可能我到的是一个小公司,是这种模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20