京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面试了8家公司,他们问了我这些机器学习题目......
今年年初以来,作者一直在印度找数据科学、机器学习以及深度学习领域的工作。在找工作的这三十四天里,他面试了8到10家公司,其中也包括初创公司、基于服务的公司以及基于产品的公司。作者希望他的面试经验能够为求职者提供一些有用的信息,因而撰写了此文。希望你读后能够有所收获!
首先自我介绍一下:
我在机器学习(语音分析、文本分析和图像分析领域应用)领域有4年以上的从业经验。总的来说,我认为这个领域的大多数工作职位主要包括文本分析(自然语言处理)和图像分析(计算机视觉)。很少有公司招聘语音或音频分析的人才。我现在的目标是应聘一个中高级职位,可以带领一个深度学习或机器学习团队做一些有趣的项目。
下面是我在应聘过程中被问到的问题,希望能够对你有所帮助。
▌公司一:基于全球性服务的某公司(面试时长:20-25min)
体验☞:除此之外面试官还问了一些问题,但是都把我问懵了,我完全不知道他想听到什么答案。我一直都想深入的聊一些技术层面的问题,比如训练一个 tesseract(一款由HP实验室开发由Google维护的开源OCR引擎)或语言模型,但是他似乎并不感兴趣。或许他只是想听到一些已经实现的成果或者是一个好的解释,又或者是一些更好的方案。我感觉他们面试一个新手和面试一个有经验的专业人员之间并没有什么区别。
▌公司二:基于全球性服务的某公司(面试时长:40-45min)
体验☞:整个面试过程都是围绕着文本相似度提问的,我都顺利通过了。但是这次仍旧没有更深层次的技术探讨。或许是公司在文本分析领域有几个小项目,最终我拿到了公司的offer。
▌公司三:基于全球性产品和服务的某公司(面试时长:40min)
体验☞:还有几个问题我已经记不清了,这是我第一次在面试中深入谈论技术细节,随后我也拿到了这家公司的offer。
▌公司四:成立一年的医疗初创公司(面试时长:50min)
体验☞:还有几个很好的问题我没有记住。尽管整个面试过程很不错,但是我们在一些问题上看法并不一致。并且在面试期间,我发现作为一个初创公司,目前只有2-3个人在做ML、DL和DS。最后我没有面试成功。
▌公司五:亚马逊公司(面试时长:50-55min)
体验☞:我面试的是亚马逊level 6的职位。他们的主要关注点是在算法和数学上。但是我并没有准备数学方面的知识,我只是谈论了我所了解的东西,并没有在数学的细节上做更为详细的探讨,因此面试官认为我并不适合level 6的工作。我相信如果你能记住机器学习算法在数学上的通用表示,就可以很轻松的通过亚马逊技术面试。
▌公司六:某全球服务巨头(面试时长:50-55min)
体验☞:我也拿到了这家公司的offer。事实上,我很喜欢这次技术交流。或许你会觉着这些问题是机器学习和数据科学领域最基础的问题,但是我感觉面试官可能不是这一领域的,或者是对这个领域的发展了解的并不多。
▌公司七:全球性商业管理公司(面试时长:25-30min)
体验☞:说实话,这次面试有点水,以至于我没有认真对待。但是问题问的很不错。我面试的职位是要带领一个十五六人的团队做项目,在这之后是经理面试和HR面试。最终他们给我提供了岗位咨询以及不错的薪资。
▌公司八:成立4年的生产和服务型公司(60分钟)
体验☞:是的,你可能会惊讶这都是些什么问题。巧合的是,我们两个人的研究领域都是语音分析(尤其是发音识别)。所以整个面试过程一直在围绕语音分析进行提问。很显然,面试官很专业,并且给了我一个正面反馈。之后,这家公司给我提供了AI解决方案架构师的工作。
一些建议
在这整个求职过程中,我大概和25-30位专业人士有过交流,下面是我为读者以及求职者提出的建议:
简历很重要。一定要在简历中写清楚你参加过的项目、Kaggle竞赛、获得的MOOC课程证书或者论文。我就是在没有任何推荐人推荐的情况下接到了亚马逊的面试电话。你的简历是打动HR和面试官的利器。
自信心和热情是成功的一半。参加面试时一定要自信,并且向面试官展示出你的热情(这一点在面试创业公司和基于服务的公司时尤为重要)。
不要过于急着回答面试官提出的问题。花些时间组织好答案再回答,如果对问题有不理解的地方,一定要请教面试官。还有就是在面试时一定要冷静!
在解释概念时一定要恰当的表现自己。举几个你已经实现过的项目,并且一定要熟悉简历中提到的熟练技能和做过的项目。
大多数情况下,面试官都是在寻找这个领域内有经验的技术人才。如果你在这个领域还是一个新手,在创建简历时可以从自己做过的项目开始。你的GitHub账号也很有说服力。除此之外,还可以多参加Kaggle竞赛和MOOC课程。
面对面试官的时候,一定要谦虚,注意倾听面试官的意见,否则你就会被拒之门外。有的时候,使用R语言和Python语言的人会相互鄙视,你最好不要陷入这种争论当中,否则也容易被拒。我个人认为R语言和Python语言都是实现逻辑和概念的工具。
最后,祝大家面试成功!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27