基于矩阵分解的隐因子模型
推荐系统是现今广泛运用的一种数据分析方法。常见的如,“你关注的人也关注他”,“喜欢这个物品的用户还喜欢。。”“你也许会喜欢”等等。
常见的推荐系统分为基于内容的推荐与基于历史记录的推荐。
基于内容的推荐,关键在于提取到有用的用户,物品信息,以此为特征向量来进行分类,回归。
基于历史记录的推荐,记录用户的评分,点击,收藏等等行为,以此来判断。
基于内容的推荐对于用户物品的信息收集度要求比较高,而许多情况下很难得到那么多的有用信息。而基于历史记录的方法,则利用一些常见的历史记录,相比与基于内容的方法,数据的收集比较容易。
协同过滤广泛运用在推荐系统中。一般的方式是通过相似性度量,得到相似的用户集合,或者相似的物品集合,然后据此来进行推荐。
Amazon的图书推荐系统就是使用的基于物品相似性的推荐,“我猜你还喜欢**物品”。
不过,简单的协同过滤效果不是很好,我们或考虑用户聚类,得到基于用户的协同过滤;或只考虑物品聚类,得到基于物品的协同过滤。
有人提出了基于矩阵分解(SVD)的隐因子模型(Latent Factor Model)。
隐因子模型通过假设一个隐因子空间,分别得到用户,物品的类别矩阵,然后通过矩阵相乘得到最后的结果。在实践中,LFM的效果会高于一般的协同过滤算法。
1. LFM基本方法
我们用user1,2,3表示用户,item 1,2,3表示物品,Rij表示用户i对于物品j的评分,也就是喜好度。那么我们需要得到一个关于用户-物品的二维矩阵,如下面的R。
常见的系统中,R是一个非常稀疏的矩阵,因为我们不可能得到所有用户对于所有物品的评分。于是利用稀疏的R,填充得到一个满矩阵R’就是我们的目的。
在协同过滤中,我们通常会假设一些用户,或者一些物品属于一个类型,通过类型来推荐。这这里,我们也可以假设类(class),或者说是因子(factor)。我们假设用户对于特定的因子有一定的喜好度,并且物品对于特定的因子有一定的包含度。
比如,用户对于喜剧,武打的喜好度为1,5;而物品对于喜剧,武打的包含度为5,1;那么我们可以大概地判断用户不会喜欢这部电影。
也就是我们人为地抽象出一个隐形因子空间,然后把用户和物品分别投影到这个空间上,来直接寻找用户-物品的喜好度。
一个简单的二维隐因子空间示意图如下:
上图以男-女;轻松-严肃;两个维度作为隐因子,把用户和电影投影到这个二维空间上。
上面的问题,我们用数学的方法描述,就是写成如下的矩阵:
P表示用户对于某个隐因子的喜好度;Q表示物品对于某个隐因子的包含度。我们使用矩阵相乘得到用户-物品喜好度。
正如上面所说,R是一个稀疏的矩阵,我们通过R中的已知值,得到P,Q后,再相乘,反过来填充R矩阵,最后得到一个满的R矩阵。
于是隐因子模型转化为矩阵分解问题,常见的有SVD,以及下面的一些方法。
下面介绍具体的方法
2. Batch learning of SVD
设已知评分矩阵V,I为索引矩阵,I(I,j)=1表示V中的对应元素为已知。U,M分别表示用户-factor,物品-factor矩阵。
于是,我们先用V分解为U*M,目标函数如下:
第一项为最小二乘误差,P可以简单理解为点乘;
第二项,第三项为防止过拟合的正则化项。
求解上述的优化问题,可以用梯度下降法。计算得负梯度方向如下:
我们每次迭代,先计算得到U,M的负梯度方向,然后更新U,M;多次迭代,直至收敛。
这种方法的缺点是对于大的稀疏矩阵来说,有很大的方差,要很小的收敛速度才能保证收敛。
改进:可以考虑加入一个动量因子,来加速其收敛速度:
3. Incomplete incremental learning of SVD
上述的方法对于大的稀疏矩阵来说,不是很好的方法。
于是,我们细化求解过程。
改进后的最优化目标函数如下:
也就是,我们以V的行为单位,每次最优化每一行,从而降低batch learning的方差。
负梯度方向:
同样的,根据incrementlearning的减少方差的思想,我们可以再次细化求解过程。
以V的已知元素为单位,求解。
最优化目标函数如下:
每次迭代,我们遍历每个V中的已知元素,求得一个负梯度方向,更行U,M;
隐因子模型还有相应的其他变化版本,如compound SVD,implicit feedback SVD等,放在下一篇blog里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03