京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用过Python的用户都会被其简洁、易读、强大的库所折服,其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。
在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是python是一门高级语言,其生产效率更高,时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。
4月29-5月1日北京基于Python的数据分析现场班
三天的课程力图结合不同案例讲授数据分析领域基本知识。
这门课使用python作为载体, 结合理论知识进行实际操作, 使学生不仅理解数据分析的基本方法, 同时掌握使用python的基本实际计算技能。
培训时间:2018年4月29-5月1日 (三天)
培训地点:北京市海淀区丹龙大厦附近
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑
培训费用:3000元 / 2600元 (仅限全日制本科生及硕士研究生优惠价);食宿自理
Python讲师介绍:
张忠元, 2008年在中科院数学与系统科学研究院获理学博士学位,现任中央财经大学统计学院教授,博士生导师,也是中国计算机学会高级会员、果壳网科学顾问。主业是数据分析, 尤其是复杂网络分析,主要讲授回归分析、运筹学、数学分析等课程。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery, Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery, Physica A, Management Science等著名期刊的匿名审稿人。
Python课程导引:
近年来公众越来越关注大数据和数据分析,随着互联网和人工智能的快速发展,许多问题都可以通过数据分析加以研究, 为决策提供更坚实的依据.
本次三天的课程力图结合不同案例讲授数据分析领域基本知识.
这门课使用Python作为载体,结合理论知识进行实际操作,使学生不仅理解数据分析的基本方法,同时掌握使用Python的基本实际计算技能.
在内容的安排上,我们遵循由浅入深,循序渐进的思路,结合实际应用展开讲解.
内容包括python的基本用法、有监督学习、无监督学习、关联规则、特征工程、推荐系统、时间序列分析、孤立点探测、回归和方差分析、复杂网络分析和数据可视化.
Python课程大纲:
第1讲(3小时)
Python编程基础知识, 包括基本数据类型, 基本编程结构, 函数, 脚本文件, 数据分析的常用模块.
第2讲(3小时)
有监督学习, 包括kNN方法, 支持向量机, 随机森林和神经网络.
无监督学习, 包括kmeans, 谱聚类, DBSCAN, 非负矩阵分解和双聚类.
关联规则.
第3讲(3小时)
推荐系统.
时间序列分析.
孤立点探测.
第4讲(3小时)
统计学的基本思想和常见误用.
描述性统计.
回归和方差分析.
非参数统计.
第5讲(3小时)
复杂网络分析,包括复杂网络的建模、复杂网络的拓扑结构分析和复杂网络的功能分析.
第6讲(3小时)
案例:通过对包括美国肥胖数据分析、信用卡欺诈数据分析、英超赛季表现分析和脸书社交数据分析等至少四个案例的讲解综合展示数据分析方法的使用.
优惠:
现场班老学员9折优惠;
同一单位3人以上同时报名9折优惠;
折扣优惠不叠加。
报名流程:
1:点击“http://www.peixun.net/main.php?mod=buy&cid=1201”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:进入结算中心,通过订单支付;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
Tel: 010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22