京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“小数据”的统计学
一、小数据来自哪里?
科技公司的数据科学、关联性分析以及机器学习等方面的活动大多围绕着”大数据”,这些大型数据集包含文档、 用户、 文件、 查询、 歌曲、 图片等信息,规模数以千计,数十万、 数百万、 甚至数十亿。过去十年里,处理这类型数据集的基础设施、 工具和算法发展得非常迅速,并且得到了不断改善。大多数数据科学家和机器学习从业人员就是在这样的情况下积累了经验,逐渐习惯于那些用着顺手的算法,而且在那些常见的需要权衡的问题上面拥有良好的直觉(经常需要权衡的问题包括:偏差和方差,灵活性和稳定性,手工特性提取和特征学习等等)。但小的数据集仍然时不时的出现,而且伴随的问题往往难以处理,需要一组不同的算法和不同的技能。小数据集出现在以下几种情况:
企业解决方案: 当您尝试为一个人员数量相对有限的企业提供解决方案,而不是为成千上万的用户提供单一的解决方案。
时间序列: 时间供不应求!尤其是和用户、查询指令、会话、文件等相比较。这显然取决于时间单位或采样率,但是想每次都能有效地增加采样率没那么容易,比如你得到的标定数据是日期的话,那么你每天只有一个数据点。
关于以下样本的聚类模型:州市、国家、运动队或任何总体本身是有限的情况(或者采样真的很贵)。【备注:比如对美国50个州做聚类】
多变量 A/B 测试: 实验方法或者它们的组合会成为数据点。如果你正在考虑3个维度,每个维度设置4个配置项,那么将拥有12个点。【备注:比如在网页测试中,选择字体颜色、字体大小、字体类型三个维度,然后有四种颜色、四个字号、四个字型】
任何罕见现象的模型,例如地震、洪水。
二、小数据问题
小数据问题很多,但主要围绕高方差:
很难避免过度拟合
你不只过度拟合训练数据,有时还过度拟合验证数据。
离群值(异常点)变得更危险。
通常,噪声是个现实问题,存在于目标变量中或在一些特征中。
三、如何处理以下情况1-雇一个统计学家
我不是在开玩笑!统计学家是原始的数据科学家。当数据更难获取时统计学诞生了,因而统计学家非常清楚如何处理小样本问题。统计检验、参数模型、自举法(Bootstrapping,一种重复抽样技术),和其他有用的数学工具属于经典统计的范畴,而不是现代机器学习。如果没有好的专业统计员,您可以雇一个海洋生物学家、动物学家、心理学家或任何一个接受过小样本处理训练的人。当然,他们的专业履历越接近您的领域越好。如果您不想雇一个全职统计员,那么可以请临时顾问。但雇一个科班出身的统计学家可能是非常好的投资。
2-坚持简单模型
更确切地说: 坚持一组有限的假设。预测建模可以看成一个搜索问题。从初始的一批可能模型中,选出那个最适合我们数据的模型。在某种程度上,每一个我们用来拟合的点会投票,给不倾向于产生这个点的模型投反对票,给倾向于产生这个点的模型投赞成票。当你有一大堆数据时,你能有效地在一大堆模型/假设中搜寻,最终找到适合的那个。当你一开始没有那么多的数据点时,你需要从一套相当小的可能的假设开始 (例如,含有 3个非零权重的线性模型,深度小于4的决策树模型,含有十个等间隔容器的直方图)。这意味着你排除复杂的设想,比如说那些非线性或特征之间相互作用的问题。这也意味着,你不能用太多自由度 (太多的权重或参数)拟合模型。适当时,请使用强假设 (例如,非负权重,没有交互作用的特征,特定分布等等) 来缩小可能的假设的范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22