
SPSS分析技术:判别分析
在数据处理中,有这样一种情况:现在已经有若干样本被正确地分类了,但不清楚分类的依据是什么。同时,未来还会有大量的未被分类的样本,需要按照上述规则判定这些样本的所属类别。为此,需要根据已被正确分类的样本及其属性,进行数据分析,找出影响样本归类的关键因素,甚至获得一个判定系数;然后依据判定系数,对未来样本进行判别。判别分析是为了解决未来个案归属问题而提出的一种数据分类技术,它基于已有的分类个案寻求有效的判别规则,并借助判别规则对未来个案的归属进行判定。
判别分析基于已有的个案及其分类情况(已有类别号),寻求能够决定个案类别归属的判定函数式,然后借助判定函数来对未归类个案实施判定。在针对个案的判别分析中,判别函数的质量直接影响到判定的正确率,因此寻求优质的判定函数对于判别分析的正确与否至关重要。
判别分析的价值主要体现在两个方面:
让未来个案自动归类或预测其可能的类别;
修正当前已归类个案中的不严谨结论;
基于已分类的部分个案开展分析并最终获得判别函数式,然后再依据判别函数式重新对已经分类个案进行判断,可以检查判别函数式的质量。如果判定值与原始类别号的吻合度较高,达到85%以上,则表示判别函数式有效,那么可以借助这个判别函数式对未来个案进行分类。与此同时,还可进一步检查在已有个案中,判定值与原始类别号不能吻合的那些个案,看看它们的归类是否存在问题。
两种判别方式
在SPSS中,判别分析的实现共有两种思路,分别是费舍尔(Fisher)判别法和贝叶斯(Bayes)判别法。
Fisher判别法
Fisher判别法是一种基于多维坐标系的判定方式。如果待研究个案被分为K类,那么系统可创建一个K-1维的坐标系,每个类别的中心都是坐标系中的一个点,被称之为质心点。每一个个案都可以表示为K-1个数值构成的坐标点,这个坐标点距离那个质心点更近,就归类到那个类别之中。
例如,将一个个案集分为三类,如果采用Fisher判别法就需要构成一个二维的平面直角坐标系,在这个坐标系中有3个质心点。执行Fisher判别分析后,系统会创建两个函数式,分别可以计算出每个个案对应的X坐标和Y坐标,然后通过计算这个点与每个质心点的距离,找到与当前点距离最小的质心点,从而确定当前个案的归属。
Bayes判别法
Bayes判别法的基本思路是:直接为每个类别产生一个判别函数式。如果原始个案被分为K类,则直接产生K个函数式。对于待判定类别的个案,直接把该个案各属性的取值代入到每个判别函数式中,那个函数式的值最大,该个案就被划归到那个类别中。
例如,某原始个案集被分为4类,则分别产生了Y1~Y4四个函数式。对于待分类的个案H,可以把H的各个属性值分别代入到函数式Y1~Y4中,然后比较4个数值的大小。假设最终结果是Y3最大,那么这个个案就属于第3类。
自变量筛选
与多元线性回归分析相似,判别函数式也是一组包含多个自变量的多元线性方程。因此在设计判别函数式时,同样存在着对多个自变量的进入判定与筛选问题。有下面几种自变量筛选的方式:
1、使用全部自变量法;把用户提供的所有自变量都直接纳入到判定函数式中,无论这些自变量对函数式的作用力到底有多大。这个方法是系统默认的方法。
2、使用步进方法;让自变量逐个尝试进入函数式,如果进入到函数式中的自变量符合条件,则保留在函数式中,否则,将从函数式中剔除。使用步进方法,对自变量的筛选方式。使用步进方法,对自变量的筛选方式,又包括以下几种:
威尔克斯lambda值法:它是组内平方和与总平方和之比,用于描述各组的均值是否存在显著差别,当所有观测组的均值都相等时,Wilks’lambda值为1,;当组内变异与总变异相比很小时,表示组件变异较大,表示组间变异较大,系数接近于0。
未解释方差法:它指把计算残余最小的自变量优先纳入到判别函数式中。
马氏距离法:它把马氏距离最大的自变量优先纳入到判别函数式中。
最小F比率法:它把方差差异最大的自变量优先纳入到判别函数中。
劳氏增值法:它把劳氏统计量V产生最大增值的自变量优先纳入到判别函数中。
范例分析
现在有三种不同种类的花生,记录它们的质量、宽度和长度,制成统计表。每种类型都有20个样本,共60个样本。根据不同种的花生特征,建立鉴别不同种花生的判别方程。
分析步骤
1、选择菜单【分析】-【分类】-【判别】。将类型变量选为分组变量,将质量、宽度和长度选为自变量。自变量进入方法选择步进法。
2、选择【保存】项,将预测组成员和判别分数选中。点击继续,然后点击确定。
结果分析
1、输出判别结果,如下图所示,Dis_1表示判定类别,Dis1_1和Dis2_1分别表示将个案值代入到自动生成的两个判定函数中得到的结果。
2、步进方式筛选自变量的情况;
从上图可知,质量、宽度和长度都被纳入到函数式中,且显著性都为0.000,表示三个自变量的影响力是显著的。
上图是对三个变量步进式进入方程的结果:产生三个模型,序号为1~3。三种模型的Lambda值都远小于1,而且第三个模型的lambda值仅为0.001,显著性为0.000。因此,从总体上说,这三个模型都是有效的,以第三个模型为最终结果。
3、典型判别式函数摘要;
在特征值表格中,本次判别分析共生成两个判别函数式,函数式1和函数式2的特征值都大于1;下表的lambda值都远小于1,显著性都为0.000,说明两个函数式的作用都非常强。
4、函数系数及组质心坐标表格
左边的表格式生成的两个函数式的系数。右边的表格表示三个组质心的坐标。对于标准化的判别函数式,其自变量的系数可以直观地反映该自变量对最终判定的影响力水平。但需要注意的是,在具体的应用当中,不能直接把个案的各个属性的原始值代入到标准化函数式中使用。只有已经标准化的自变量属性值才可应用于标准化的判别函数式。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18