京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘(Data Mining)是指从大量数据中发现潜在的有价值的信息和模式的过程。它利用统计学、机器学习、人工智能等技术手段,将数据转化为有意义的知识,以支持决策、预测和发现新的关联等应用。
数据挖掘的流程一般包括如下几个步骤:
首先,我们需要确定数据挖掘的业务目标,例如产品推荐、客户细分、异常检测等。同时,我们需要了解数据的基本特征,包括数据类型、格式、大小、质量、密度等。这可以帮助我们制定合适的数据处理方法和模型选择。
在这一步中,我们需要对原始数据进行清洗、集成、变换和缩放等操作,以便将其转化为可用的形式。这包括去除重复数据、填补缺失值、处理异常值、转换数据类型等。同时,我们需要对数据进行切分,划分为训练集、验证集和测试集,以便评估模型的性能。
在构建模型之前,我们需要对数据进行特征选择和降维处理,以减少冗余信息、避免过拟合和提高模型效率。特征选择的方法包括过滤、包装和嵌入等,降维的方法包括主成分分析(PCA)、线性判别分析(LDA)等。
在这一步中,我们需要选择合适的模型算法,并训练模型以预测或分类目标变量。常用的模型算法包括决策树、支持向量机、人工神经网络、朴素贝叶斯等。在模型构建过程中,我们需要进行参数调整和交叉验证等操作来优化模型性能和泛化能力。同时,我们需要评估模型的性能,包括精度、召回率、F1值、ROC曲线和AUC等指标。
最后,我们需要从模型中获取有用的知识和规律,并将其应用于实际业务场景中。这可以帮助我们做出更准确和可靠的决策,提高业务效益和用户体验。
总之,数据挖掘的流程是一个迭代和交互的过程,需要不断地调整和完善模型,以获得更好的结果。同时,数据挖掘也需要不断学习和更新技术和思想,以应对不断变化的数据环境和业务需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17