京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中的离群值检测和处理
数据中的离群值往往会扭曲预测结果并影响模型精度,回归模型中离群值的影响尤其大,因此我们需要对其进行检测和处理。
离群值检测的重要性
处理离群值或者极端值并不是数据建模的必要流程,然而,了解它们对预测模型的影响也是大有裨益的。数据分析师们需要自己判断处理离群值的必要性,并结合实际问题选取处理方法。那么,检测离群值的重要性体现在哪儿呢?其实,由于离群值的存在,模型的估计和预测可能会有很大的偏差或者变化。我们用汽车数据来说明这个现象。
我将用包含和不含离群值的汽车数据来建立一个简单的线性回归模型,以此阐述离群值的影响。为了更好的区分它的效应,我在原始数据集中人为地加入了极端值,然后利用线性归回做预测。
# 给数据集插入离群值
cars1 <- cars[1:30, ] # 原始数据
cars_outliers <- data.frame(speed = c(19, 19, 20, 20, 20),
dist = c(190, 186, 210, 220, 218)) # 引入离群值
cars2 <- rbind(cars1, cars_outliers) # 包含李全职的数据
# 绘制包含离群值的数据建模结果
par(mfrow = c(1, 2))
plot(cars2$speed, cars2$dist, xlim = c(0, 28), ylim=c(0, 230),
main = "With Outliers", xlab = "speed", ylab = "dist",
pch = "*", col = "red", cex = 2)
abline(lm(dist ~ speed, data = cars2), col = "blue", lwd = 3, lty = 2)
# 绘制原始数据建模加过,留意回归线斜率的变化
plot(cars1$speed, cars1$dist, xlim = c(0, 28), ylim = c(0, 230),
main = "Outliers removed \n A much better fit!",
xlab = "speed", ylab = "dist", pch = "*", col = "red", cex = 2)
abline(lm(dist ~ speed, data = cars1), col = "blue", lwd = 3, lty = 2)
结果如下
留意一下移除离群值后拟合线的斜率变化。如左图所示,如果用包含离群值的数据训练模型,我们预测结果在速度很快的数据上会有很大的误差,因为回归线非常陡峭。
检测离群值
1. 单变量检测法
给定一个连续变量后,离群值可以认为是哪些超出1.5倍四分位距的观测点。四分位距(Inter Quartile Range, a.k.a IQR)是0.25分位数和0.75分位数的差,我们可以通过箱线图来检测离群点,在须轴以外的点就是。
url <- "http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv"
# 备用数据源: https://raw.githubusercontent.com/selva86/datasets/master/ozone.csv
inputData <- read.csv(url) # 导入数据
outlier_values <- boxplot.stats(inputData$pressure_height)$out # outlier values.
boxplot(inputData$pressure_height, main="Pressure Height", boxwex=0.1)
mtext(paste("Outliers: ", paste(outlier_values, collapse=", ")), cex=0.6)
2. 双变量检测法
如果有两个变量X和Y,X是分类变量而Y是连续变量,可以绘制在X的不同类别上Y的箱线图来检测离群值。
url <- "http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv"
ozone <- read.csv(url)
# Month和Day_of_Week是分类变量
boxplot(ozone_reading ~ Month, data=ozone, main="Ozone reading across months") # 有明确的模式
boxplot(ozone_reading ~ Day_of_week, data=ozone, main="Ozone reading for days of week") # this may not be significant, as day of week variable is a subset of the month var.
箱线图如下:
上图我们发现每个月的ozone_reading数据有明显变化,但在周内每天的区别并不明显。每一个类别中,在箱线图须轴以外的店就是离群值。
如果X和Y都是连续变量,我们可以将X离散化
boxplot(ozone_reading ~ pressure_height, data=ozone,
main="Boxplot for Pressure height (continuos var) vs Ozone")
boxplot(ozone_reading ~ cut(pressure_height, pretty(inputData$pressure_height)),
data=ozone, main="Boxplot for Pressure height (categorial) vs Ozone", cex.axis=0.5)
结果如下
离散化处理后,你会发现被判定为离群值的点更少,并且ozone_reading随着pressure_height的增加而变化的趋势愈发明确了。
3. 多元模型检测法
仅凭一个特征就判定一个观测值是离群点可能并不科学。利用多个特征的信息来判断个体是否是离群值会更好,这就需要使用Cook距离。
Cook距离可以衡量一个给定的回归模型是否只受单个变量X的影响。Cook距离会极端每一个数据点对预测结果的影响。对于每个观测i,Cook距离会衡量包含i与不包含i时,Y的拟合值的变化,这样我们就知道了i对拟合结果的影响了。
观测i的Cook距离 计算公式如下:
其中:
是使用所有观测计算的第j个y的拟合值
是使用除观测i外所有观测计算的第j个y的拟合值
是均方误差
是回归模型的系数个数
mod <- lm(ozone_reading ~ ., data=ozone)
cooksd <- cooks.distance(mod)
影响评估
一般来说,如果某个观测的Cook距离比平均距离大4倍,我们就可以认为这个点是离群点,当然这不是一个非常死板的判定条件。
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") # 绘制Cook距离
abline(h = 4*mean(cooksd, na.rm=T), col="red") # 添加决策线
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, na.rm=T),names(cooksd),""), col="red") # 添加标签
结果如下:
现在让我们从原始数据集中找出那些影响力特别大的观测点吧。如果你把它们逐一挑出来了,你就能发现为何它们会有这么大的影响力了——这些观测的在某些变量上的取值过于极端了。
influential 4*mean(cooksd, na.rm=T))]) # 有影响力的观测值行标
head(ozone[influential, ]) # 列出这些观测
#> Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed Humidity
#> 19 1 19 1 4.07 5680 5 73
#> 23 1 23 5 4.90 5700 5 59
#> 58 2 27 5 22.89 5740 3 47
#> 133 5 12 3 33.04 5880 3 80
#> 135 5 14 5 31.15 5850 4 76
#> 149 5 28 5 4.82 5750 3 76
#> Temperature_Sandburg Temperature_ElMonte Inversion_base_height Pressure_gradient
#> 19 52 56.48 393 -68
#> 23 69 51.08 3044 18
#> 58 53 58.82 885 -4
#> 133 80 73.04 436 0
#> 135 78 71.24 1181 50
#> 149 65 51.08 3644 86
#> Inversion_temperature Visibility
#> 19 69.80 10
#> 23 52.88 150
#> 58 67.10 80
#> 133 86.36 40
#> 135 79.88 17
#> 149 59.36 70
让我们看看前6个观测来看看为什么这些观测富有影响力吧。
第58, 133, 135行的ozone_reading值非常大
第23, 135, 149行的Inversion_bzase_height值非常大
第19行有非常低的Pressure_gradient
离群值检验
car包中的outlierTest函数可以返回指定模型中影响力最大的观测值。
car::outlierTest(mod)
#> No Studentized residuals with Bonferonni p Largest |rstudent|:
#> rstudent unadjusted p-value Bonferonni p
#> 243 3.045756 0.0026525 0.53845
0utliners包
outliers包提供了几个有用的函数来系统地检测出离群值。其中一些函数既便利又好上手,特别是outliers()函数和scores()函数。
outliers()会返回和平均值相比较后最极端的观测,如果你给定参数opposite=TRUE,它会返回位于另一端的观测。
set.seed(1234)
y=rnorm(100)
outlier(y)
#> [1] 2.548991
outlier(y,opposite=TRUE)
#> [1] -2.345698
dim(y) <- c(20,5) # convert it to a matrix
outlier(y)
#> [1] 2.415835 1.102298 1.647817 2.548991 2.121117
outlier(y,opposite=TRUE)
#> [1] -2.345698 -2.180040 -1.806031 -1.390701 -1.372302
scores()函数有两大功能。一是计算规范化得分,诸如z得分,t得分,chisq得分等。它还可以基于上述的得分值,返回那些得分在相应分布百分位数之外的观测值。
set.seed(1234)
x = rnorm(10)
scores(x) # z得分 => (x-mean)/sd
scores(x, type="chisq") # chisq得分 => (x - mean(x))^2/var(x)
#> [1] 0.68458034 0.44007451 2.17210689 3.88421971 0.66539631 . . .
scores(x, type="t") # t得分
scores(x, type="chisq", prob=0.9) # 是否超过chisq分布的0.9分位数
#> [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
scores(x, type="chisq", prob=0.95) # 0.95分位数
scores(x, type="z", prob=0.95) # 基于z得分判定
scores(x, type="t", prob=0.95) # 大家都懂,我懒得翻译了
离群值处理
在寻找到离群值之后,你需要根据处理的实际问题来对它们进行处理,常用方法如下:
1. 插值
使用均值/中位数/众数插值,这个方法在 缺失值的处理 邻领域已被广泛应用。另一种稳健的做法是使用 链式方程 进行多元插值。
2. 封顶
对于那些取值超过1.5倍四分位距的数值,可以分别用该变量5%和95%的分位数替代原数据,下方代码可以实现该过程:
x <- ozone$pressure_height
qnt <- quantile(x, probs=c(.25, .75), na.rm = T)
caps <- quantile(x, probs=c(.05, .95), na.rm = T)
H <- 1.5 * IQR(x, na.rm = T)
x[x < (qnt[1] - H)] (qnt[2] + H)] <- caps[2]
注:该方法和数据预处理中的缩尾(winsorize)处理基本一致,和数理统计中的m统计量思想也类似。
3. 预测
这是另一种思路,将离群值先替换做缺失值,再将其视作被解释变量进行预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16