
用R语言进行数据探索
这一次我们来说一下数据的探索性分析,R语言图标100X76
1) 主要分析工具
主要的图形表示方法有
1条图(barplot):用于分类数据。
2.直方图(hist)、点图(dotchart)、茎叶图(stem):用于观察数值型分布的形状。
3.箱线图(boxplot):给出数值型分布的汇总数据,适用 于不同分布的比较和拖尾、截尾分布的识别。
4.正态概率图(qqnorm):用于观察数据是否近似地服从 正态分布。
2)单变量数据分析
一 分类型数据
对于分类数据我们可以用频数表来分析,也可以用条形图和饼图来描述。
1. 分类频数表(table) 频数表可以描述一个分类变量的数值分布概况。table(x)
2. 条图(Barplot) 条图的高度可以是频数或频率,图的形状看起来是一样,但是刻度不一样。R 画条形图的命令是 barplot()。对分类数据作条 形图,需先对原始数据分组,否则作出的不是分类数据的条形图。
3.饼图用于表示各类别某种特征的构成比情况,它以图形的总面积为 100%,扇形面积的 大小表示事物内部各组成部分所占的百分比构成比。用命令 pie(),像条形图一样对原始数据作饼图前要先分组。
二 数值型数据
1. 集中趋势和离散程度 对于数值型数据,经常要分析一个分布的集中趋势和离散程度,用来描述集中趋势的主要有均值,中位数;描述离散程度的 主要有方差、标准差。求均值、中位数、方差、标准差的命令分别是 mean()、median()、var()、sd()在 R 里还提供了 fivenum()对数值数据五等分法(运算) 和 summary()求出分位数:
2.稳健的集中趋势和离散程度 用均值和方差描述集中趋势和离散程度往往基于正态分布,而如果数据是长尾或是有异常值时,这时用均值和方差就不 能正确地描述集中趋势和离散程度。还可以利用截尾均值来描述用 R 计算截尾均值,只要在 mean 函数里对 trim 参数进行设置就可以了,例如:mean(salarym,trim=0.2)
3. 茎叶图 用函数 stem()
4.对数值数据分组 在 R 里可以用 cut 函数对数值数据进行分组。并用 table()函数整理成 频数表形式:
例如: salaryg=cut(salary,breaks=c(2000,3000,4000,max(salary)))
5. 直方图直方图用于表示(描述)连续性变量的频数分布,用于考察变量的分布是否服从某种分布类型。R 里用来作(做)直方图的函数是 hist(),作频率直方图,把 probability 参数设置为 T 可以了,默认为 F。用 rug()命令把各个数据竖线描绘在 X 轴上。
6. 箱线图 函数是 boxplot( ) 可以设置垂直型和水平型,默认 是垂直型,要得到水平型箱线图,只要把参数 horizontal 设为 T。
7. 密度函数线density()
3) 双变量数据分析
一 分类数据对分类数据
1. 二维表 R 的 table()函数可以把双变量分类数据整理成二维表形式, table 命令处理双变量数据类似于处理单变量数据,只是参数(变 量)由原来的一个变成了两个。
2.计算边缘概率,用函数 prop.table( ),其句法是:prop.table(x, margin),当 margin=1 时,表示各个数据占行汇总数的比例,margin=2 表示各 个数据占列汇总数的比例,省略时,表示占总和的比例。
3 复杂(复式)条图
R 作条形图的函数是 barplot( ),不过在作条形图前需对数据进行分组。
二 分类数据对数值型数据
此处学习时对照着视频中的例题可以很好的理解
三 数值型数据对数值型数据
1 散点图 plot( )函数
2. 相关系数 相关系数用来反映两个数值变量的相关程度。求相关系 数的函数是 cor()。cor( )也可以求 spearman 等级 相关系数(秩相关系数)。
4)多变量数据分析
一 访问数据框数据
1 attach( )函数将数据框“连接(绑定)”入当前的名字空间, 从而可以直接用数据框中的变量名访问而不必用“数据框名$变量 名”这种格式。当变量较多时,通常将其存为一个文本文件
2. 以数组形式访问 数组名[行,列]
3. 以列表形式访问数据框 在列表名称后面加$符号,再写上变量名还可以用列表名[[变量名(号)]]形式访问。
二 数据框的拆分与合并
R 里拆分数据框和合并数据框分别用函数 unstack( )、 stack( )。
三 多变量数据的分析
1 多维列联表 able( )函数可生成多维表。
2 复式条形图 复式条形图多考察了一个分组因素,常用于考察比较两组研究对 象的某观察指标。作复式条形图之前应先对数值数据进行分组, 然后用 table( )函数作频数表。作复式条形图的函数是 barplot( ), R 默认的分段式复式条形图,要作并列式复式条形图,要设置参 数 beside=TRUE。
3. 并列箱线图 对于多变量数据经常要用到箱线图来分析各个变量的分布情况。函数是 boxplot( )
4. 点带图(stripchart) 箱线图经常用来比较各变量的分布情况,尤其是当每个变量都有很(较)多的观察值时,点带图也可以用来比较各变量的分 布情况,但主要用在样本观察值比较少时。R 作点带图的函数是 stripchart( ),对于双变量数据其用法是 stripchart(z~t),z 变量 在 t 变量上的分布情况,不同的是这里 z 变量刻度在 x 轴上,而 t 变量在 y 轴上。
5. 多变量散点图
(1)重叠散点图 有时出于研究的需要,需将两个或多组两个变量的散点图绘
制在同一个图中,这样可以更好比较它们之间的相关关系,这时就可以绘重叠散点图。
(2)矩阵式散点图 当欲同时考察三个或三个以上的数值变量间的相关关系时,
若一一绘制它们之间的简单散点图,十分麻烦。利用矩阵式散点 图比较合适,这样可以快速发现多个变量间主要相关性,这一点 在多元线性回归显得尤为重要。R 作矩阵式散点图的函数是 pairs()。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29