
CDA数据分析师 出品
编辑:JYD
对于很多初入数据分析领域的小白来说,往往都会陷入迷茫。数据分析的坑很大,一旦走上这条路,就要明确基本方向,不然只会越走越偏,最后耗费力气,毫无收获。
比如你想要成为一名数据分析师,你就可以到招聘网站看看,对应岗位的需求是什么?这样你就会对需要掌握的岗位技能架构有了初步认识。
数据分析领域对应的岗位非常多,经常把同学们绕晕。比如:数据分析、商业分析、运营分析、产品分析、销售分析、数据挖掘、算法模型等等。
如何区别这些让人眼花缭乱的概念,今天系统讲解一下。
数据分析师根据自己的工作岗位、行业、工作内容等等,可以分成非常多的种类。
但总体可以区分成两个方向,即业务方向和技术方向。当然,在业务和技能上两类也是需要相互结合的。
其中,想要短时间内快速成为技术方向的数据分析师,是非常很难的。一定要底子深基础牢,编程语言基础、统计学知识、算法、数据结构样样不能少,甚至得精通,而这些不是我们自习两三个月就能完全掌握的。
而业务方向的数据分析师,在目前的招聘市场上需求岗位最多。这种岗位的进入门槛会相对较低一点,所以对于0基础想转行的同学,自然业务型数据分析师会更适合。但如果入职后不能尽快掌握业务,提升自己的数据思维能力,就很有可能就变成“只会提数的表哥表姐”。
所以,想快速成为一名数据分析师,又不想入职后沦为“打杂”人员。就应该知道自己应该持续学习并掌握的各项技能,以及自己进入数据分析行业后的发展路径。
我分析了招聘网站上多个与数据分析的相关岗位,根据薪资高低大概分为三个等级。
各阶段数据分析师的差异体现在三个方面:业务技能、执行管理能力、业内影响力。
后两者能力属于软实力,需要在工作中逐渐掌握。作为初学者,第一步最需要的是掌握业务技能,最好能了解完整的学习路线。
初级水平:
掌握常见表格制作和数据库基本功能操作,就可以做业务数据分析师。
中级水平:
在初级水平基础上,对常见函数应用熟练,数据库操作熟练,掌握ETL能力,掌握统计分析模型,具备行业相关业务经验,可以进行简单的建模操作,就可以做策略数据分析师。
高级水平:
具备数据科学家能力,机器学习、深度学习算法能力、建模挖掘能力和建模挖掘能力突出,对行业业务逻辑深度认知,就可以做算法工程师、挖掘工程师。
所以我们该如何具备这些能力呢?
学习统计学
首先需要学习统计学。统计学部分主要分为三大模块。
第一个模块就是描述性统计。
可以帮助我们在拿到一个数据集的时候进行初步的统计分析。描述性统计当中需要掌握的概念有,比如集中趋势、离散趋势、数据分布、缺失值和异常值等等。
第二个模块是参数估计和假设检验。
这里需要掌握的大约有,比如点估计方法、置信度、置信区间、原假设、备择假设、P值、检验统计量等。
第三个模块是统计模型。
在这个模块当中,主要要掌握的包括卡方分析、方差分析、主成分分析、因子分析,以及统计模型的圆点:回归分析。
学习分析工具
首先需要学习统计学。统计学部分主要分为三大模块。
在学习完统计学之后,就要开始代码及编程部分,进入分析工具的学习了。
之前我们讲过入门数据分析必学的4大工具,这期我们直接来讲利用这些工具的要学会那些技能。
在Excel中我们主要需要掌握一些基本的计算函数、数据透视表以及VLOOKUP函数。
在SQL中我们主要掌握表的增、删、改、查、表连接、子查询以及窗口函数的运用和SQL语句的执行顺序。
在Python中,我们要掌握最基本的数据结构,包括列表、字典、字符串、元祖、数组、集合。还需要掌握基本的语句,比如说IF语句、For循环、while 循环。还要熟练运用Python中的各种库,比如有numpy/pandas等等。
最后还有数据可视化的分析工具BI。大家需要学习的包括仪表盘的制作,一些基本的计算函数的运用。
算法模型和机器学习
学习完工具后我们就要开始算法模型以及相关机器学习的部分知识了。
大家主要掌握的就是模型的原理、模型的运用,模型的调优以及效果的评估。机器学习部分主要可以分为:有监督学习以及无监督学习。在有监督学习中,主要可以分为回归算法与分类算法。而在无监督学习中,我们主要需要掌握的就是聚类算法和降维算法。
掌握业务知识
最后就是业务知识模块。
数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
如果你也想快速成为一名数据分析师,欢迎咨询我们。顺便给大家提供了一份数据分析学习资料,欢迎扫码领取学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04