CDA数据分析师 出品
作者:Elad Cohen
编译:Mika
作为一家技术公司的副总裁,我在管理数据科学部门时,还需要处理大量的招聘工作。
通常,招聘人员在一份简历上花的时间平均只有7.4秒。
一个抢手的职位可能会吸引到一百余人投递简历。在本文中,我将教你几个技巧,帮助你在求职过程中让你的简历脱颖而出。
下面我将分享一下,在快速筛选数据相关职位简历时,我最看重的这7点。
在浏览简历时,我会快速看看你以前的职位,看是否与数据挂钩,有数据相关工作经验。
比如具体有数据相关项目的经验,在项目中通过什么方法解决了哪些问题,或者参加过数据相关的培训或课程。
接着,我还会看一下你曾从事工作的技术方面内容,以及业务成果。有许多精通技术的数据分析人员对业务术语并不擅长。因此如果你能清晰罗列出所做工作对业务KPI的影响,这将是加分项。
例如,指出模型在AUC方面的改进是可以的,但若能明晰模型改进会导致转换率增加,这意味着你有不错的业务知识,并且有数据赋能业务的意识。
看到以下的例子,比较用技术与业务两个不同侧重点,来描述相同工作的方案:
我还会看看求职者所受的教育情况如何,来自哪所学校,哪个专业。对于应届生,我还会考察他们的成绩等情况。
由于数据分析是一个新兴且较广泛的领域,并没有某种唯一的标准化测试。即使你没有相关专业的教育背景,但如果有该领域的从业经验或接受过数据相关培训也是可以的。
我看过不少排版美观的简历,也收到过一些没有任何格式的txt文本简历。在编写简历时,可以找一找好的模板,在有限的篇幅内清晰介绍自己的情况。
这里可以有效利用简历的空间。将页面分割开来,突出不按时间顺序排列的工作或教育经历。当中还可以包括你熟悉的技能,做过的项目,自己的Github或博客的链接等。同时,一些简单的图标也可以帮助强调标题。
许多求职者在他们熟悉的语言、工具旁边会用1-5颗星或柱状图代表自己的熟悉度。我个人不太喜欢这种方法,原因有几个。
有些人把语言和工具,甚至把语言和软技能混为一谈。把自己领导力的熟悉度填上“4.5星”是没有说服力的。
还有把自己技能的主观衡量标准变成饼状图的,比如Python技能占30%,团队合作能力占10%等。虽然这是一种突出自己的创新方式方式,但却显示了自己对不同图表概念缺乏基本了解。
以下有两份排版很不错的简历,可以用于参考:
两个示例中使用的垂直分割,以区分经验、技能、成就等。用简短的摘要段落能有助于描述求职人背景和期望。
我主要会看这两种类型。
一些求职者只使用深度学习,包括在结构化数据,而这些数据更适合基于树的模型。虽然使用深度学习本身没有问题,但限制的工具集会让你的解决方案有局限性。
正如马斯洛所说,“如果你唯一的工具是一把锤子,那么你就会把所有问题都看成是钉子。”
在我的日常工作中,我们处理的是结构化、领域驱动、特征工程化的数据,这些数据最好用各种形式的提升树来处理,光使用深度学习是不够的。
这通常与两个需要大量专业知识的领域有关--计算机视觉和自然语言处理。
这些领域的专家很抢手,在许多情况下,他们的整个职业生涯都将专注于这些领域。但对于一个从事一般数据分析工作的人来说,这通常不适合。因此,如果你的大部分经验是在自然语言处理领域,而你要申请该领域以外的职位,可以试着强调你曾在结构化数据方面工作过的经历,以展示多样性。
通常细分为语言、特定的包(scikit-learn、pandas、dplyr等)、云及其服务(AWS、Azure、GCP)或其他工具。
某些求职者将其与熟悉的算法或架构混在一起,比如RNN、XGBoost、K-NN。
就我个人而言,我更倾向于围绕技术和工具展开;当提到一个特定的算法时,我想知道求职者的机器学习理论知识是否仅限于这些特定的算法。
这部分,我会看技术栈的相关性。
技能点是否是近几年的,这表明求职者在主动学习新技能;还有技术栈的广度,表明求职者是否局限于特定的工具;以及与我们技术栈的匹配度。
你会在GitHub上有分享个人项目吗?参加Kaggle比赛或副业项目都是加分项。从中能够看你代码的简洁性、预处理的类型、特征工程、EDA、算法选择以及在实际项目中解决问题的能力。
这里如果有的话,可以附上你的GitHub和Kaggle链接,以便面试官深入了解你的代码。
同时要熟悉自己做过的项目,最好在面试前就梳理一遍。之前的面试中,就有求职者对项目不太熟悉,从而面试官无法就项目展开,进一步了解求职者在项目中做出的选择和背后的原理。记住,在罗列项目时,列出2-3个高质量的项目要比10个质量的更有效。
结语
如果你正在找数据相关的工作,可以花点时间过一遍文章中的要点,希望本文能对大家的求职有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03