
CDA数据分析师 出品
作者:Elad Cohen
编译:Mika
作为一家技术公司的副总裁,我在管理数据科学部门时,还需要处理大量的招聘工作。
通常,招聘人员在一份简历上花的时间平均只有7.4秒。
一个抢手的职位可能会吸引到一百余人投递简历。在本文中,我将教你几个技巧,帮助你在求职过程中让你的简历脱颖而出。
下面我将分享一下,在快速筛选数据相关职位简历时,我最看重的这7点。
在浏览简历时,我会快速看看你以前的职位,看是否与数据挂钩,有数据相关工作经验。
比如具体有数据相关项目的经验,在项目中通过什么方法解决了哪些问题,或者参加过数据相关的培训或课程。
接着,我还会看一下你曾从事工作的技术方面内容,以及业务成果。有许多精通技术的数据分析人员对业务术语并不擅长。因此如果你能清晰罗列出所做工作对业务KPI的影响,这将是加分项。
例如,指出模型在AUC方面的改进是可以的,但若能明晰模型改进会导致转换率增加,这意味着你有不错的业务知识,并且有数据赋能业务的意识。
看到以下的例子,比较用技术与业务两个不同侧重点,来描述相同工作的方案:
我还会看看求职者所受的教育情况如何,来自哪所学校,哪个专业。对于应届生,我还会考察他们的成绩等情况。
由于数据分析是一个新兴且较广泛的领域,并没有某种唯一的标准化测试。即使你没有相关专业的教育背景,但如果有该领域的从业经验或接受过数据相关培训也是可以的。
我看过不少排版美观的简历,也收到过一些没有任何格式的txt文本简历。在编写简历时,可以找一找好的模板,在有限的篇幅内清晰介绍自己的情况。
这里可以有效利用简历的空间。将页面分割开来,突出不按时间顺序排列的工作或教育经历。当中还可以包括你熟悉的技能,做过的项目,自己的Github或博客的链接等。同时,一些简单的图标也可以帮助强调标题。
许多求职者在他们熟悉的语言、工具旁边会用1-5颗星或柱状图代表自己的熟悉度。我个人不太喜欢这种方法,原因有几个。
有些人把语言和工具,甚至把语言和软技能混为一谈。把自己领导力的熟悉度填上“4.5星”是没有说服力的。
还有把自己技能的主观衡量标准变成饼状图的,比如Python技能占30%,团队合作能力占10%等。虽然这是一种突出自己的创新方式方式,但却显示了自己对不同图表概念缺乏基本了解。
以下有两份排版很不错的简历,可以用于参考:
两个示例中使用的垂直分割,以区分经验、技能、成就等。用简短的摘要段落能有助于描述求职人背景和期望。
我主要会看这两种类型。
一些求职者只使用深度学习,包括在结构化数据,而这些数据更适合基于树的模型。虽然使用深度学习本身没有问题,但限制的工具集会让你的解决方案有局限性。
正如马斯洛所说,“如果你唯一的工具是一把锤子,那么你就会把所有问题都看成是钉子。”
在我的日常工作中,我们处理的是结构化、领域驱动、特征工程化的数据,这些数据最好用各种形式的提升树来处理,光使用深度学习是不够的。
这通常与两个需要大量专业知识的领域有关--计算机视觉和自然语言处理。
这些领域的专家很抢手,在许多情况下,他们的整个职业生涯都将专注于这些领域。但对于一个从事一般数据分析工作的人来说,这通常不适合。因此,如果你的大部分经验是在自然语言处理领域,而你要申请该领域以外的职位,可以试着强调你曾在结构化数据方面工作过的经历,以展示多样性。
通常细分为语言、特定的包(scikit-learn、pandas、dplyr等)、云及其服务(AWS、Azure、GCP)或其他工具。
某些求职者将其与熟悉的算法或架构混在一起,比如RNN、XGBoost、K-NN。
就我个人而言,我更倾向于围绕技术和工具展开;当提到一个特定的算法时,我想知道求职者的机器学习理论知识是否仅限于这些特定的算法。
这部分,我会看技术栈的相关性。
技能点是否是近几年的,这表明求职者在主动学习新技能;还有技术栈的广度,表明求职者是否局限于特定的工具;以及与我们技术栈的匹配度。
你会在GitHub上有分享个人项目吗?参加Kaggle比赛或副业项目都是加分项。从中能够看你代码的简洁性、预处理的类型、特征工程、EDA、算法选择以及在实际项目中解决问题的能力。
这里如果有的话,可以附上你的GitHub和Kaggle链接,以便面试官深入了解你的代码。
同时要熟悉自己做过的项目,最好在面试前就梳理一遍。之前的面试中,就有求职者对项目不太熟悉,从而面试官无法就项目展开,进一步了解求职者在项目中做出的选择和背后的原理。记住,在罗列项目时,列出2-3个高质量的项目要比10个质量的更有效。
结语
如果你正在找数据相关的工作,可以花点时间过一遍文章中的要点,希望本文能对大家的求职有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15