
由于工作的原因,我时常需要跟公司的财务人员打交道,在聊天中我发现财务人员常常会有以下这些职场烦恼:
一直在做报表,财务技能没有提升
工作量大,重复工作多,没有时间做深入分析
财会晋升通道窄,工资老是上不去
…
前段时间我在校友会上,遇到了财务专业出身的校友小张。不同于刚毕业时总是腼腆害羞的她,现在小张开朗外向了不少,举手投足中都带着成熟和自信。聊天我中得知,如今她工作已经快3年了,已经晋升到了某电商企业的中层,薪水也翻了3倍。我不禁感到好奇,借机问问她升职加薪的秘诀。
其实在刚工作那会儿,小张也遇到了财务工作上的困境,
感觉一直在不停地做报表,每天疲于应对大量的重复性工作,财务技能却没有提升,一度陷入迷茫和恐思。
一开始,不满足于现状的小张在网上跟风报了很多职场技能培训班,一通学习下来发现并没有用武之地,作用都不大。然而一次偶然的机会,她需要用到数据分析的技能,于是到网上找了数据分析的工具和教程,边学边用,结果那次项目得到了领导的肯定。
小张自此尝到了甜头,于是下定决心学好数据分析,用数据思维结合财务领域知识,不断精进自己的技能。就这样,小张一步步在很多项目上都发挥了很大作用,得到了重用。
她跟我说,真庆幸自己当初接触到了数据分析,现在给自己定了个小目标,就是要做财务人员里最会做数据分析的那个。
的确,从小张的职场晋升经历我们不难看出,各行各业是越来越离不开数据分析技能了。
随着数字化经济在国内不断深化,互联网、金融、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的复合型数据分析人才,数据分析已成职场标配技能。
如今我们每天都要产生大量的数据,数据就在我们身边,与此同时财务也进入大数据时代,作为财务人员,要有敏锐的感官,发现时代的机遇与挑战,才能最大程度发挥出财务管理在企业管理中的重要作用。
财务工作是当今较为重要的工作,各行各业都离不开财务的相关处理,分析和结算。传统的财务模式依靠财务人员的对账、统计、结算等完成财务报表等,对于少量的财务数据可以采用这种模式,但是这种模式的弊端是效率低且容易出错,不能有效的反映出数字背后的关联信息,进而提出有效的财务决策和企业管理计划。
如今,财务人员在工作中难免会遇到以下这些困境:
1、低效率
大量的财务数据导致了工作量的指数增加,财务人员面对面对大量手动数据时,信息的核对和信息的录入等环节需花费较多的时间。而随着数据量的进一步增加和人员工资量的增加,这也要求财务人员必须寻找有效的方式减少整体的工作量。
从记账到报销的整个过程有多个环节,而手工输入数据使对帐的标准化程度较低,并且缺乏准确性的保证,从而容易导致错误率高的问题。
2、碎片化
由于财务制单人员和递交人员的时间冲突,导致财务的信息在一段时间内呈现碎片化,而大量的财务数据也是以碎片化的存在,造成工作人员对于信息中所蕴含的内容不甚了解,无整体化概念。系统之间的信息交换困难,当财务统计工作需要面对多个部门时,不同部门的数据标准或系统接口通常不一致,并且跨系统数据的积累和使用很难兼容。
3、关联性差
由于信息的碎片化,导致数据之间的联系减弱,无法从大量的数据中寻找到精确的特征信息,也就难以对大量数据进行深挖和探索,导致更多的时间花在了数据整理和做报表上,而实实在在能做出成绩的经营分析,花费的时间却很少。这样的结果就是,不能很好地为企业管理方面提供有力支持和协助决策的制定。
面对以上这些问题,财务人员应该该如何破局?有效发挥财务数据的作用呢?
财务数据越来越程序海量化和多样化,如何把重复性的工作实现自动化才是至关重要的。而目前面对大量财务数据,Excel 就变得不再够用了。下面的场景财务人是否有种莫名的熟悉感:
死磕一整天,把所积累的Excel绝招全用上终于搞定了这张“大表套小表、小表还有表外表”的报表。满心欢喜的点击“保存”按钮。鼠标在屏幕上转啊转~
咚……界面弹出一个提示框“可用资源不足,Excel无法完成此任务……”
为什么Excel老是出问题?公式一多行数一多就那么卡?为什么做个合并都那么麻烦?为什么涉及到海量业务数据,我用Excel连打开都这么费劲?
这说明工作中仅靠Excel已经远远不够了,财务人想知道,如何从海量的数据和复杂的计算逻辑中解脱出来,是否有更行之有效的解决方案?
这里就需要数据思维能力了,让数据赋能实现自动化办公,帮助让财务人员从重复繁琐的工作中解放出来。
数字化技能的核心就是数据能力,而且数据能力贯穿着公司业务全流程的每个环节,这也是为什么人们说,数字经济时代的新生产资料是数据!
我们可以看看这张数据能力图,分成四个层面:需求层、数据层、分析层、输出层。
第一层是需求层,是目标确定的过程,对整个业务进行拆解,为数据工作指明方向;
第二层是数据层,包含数据获取、数据清洗、数据整;
第三层是分析层,包含描述性统计制图、业务根因分析,这里就涉及到专业的算法;
第四层是输出层,面向管理层、决策层、执行层,给出不同的数据报告、业务仪表盘、落地模型等。
下面我们已财务对账这个案例场景举例,看看数据分析能力是如何高效解决这个问题的。
对账可以说是财务最常做的一项工作。就算你们公司的系统已经非常完整了,你还是会遇到两个表要核对差异在哪里的情况。你会怎么做?
当数据量不大的时候,我们最简单的做法就是把两张表放到一起,一左一右进行对比。
但如果数据量大了,几百上千行,甚至几万行,这个方法就不太现实了。
比如我们现在有的两张数据表,一份公司银行存款明细账和一份银行流水,我们需要将公司银行存款明细中的借方与银行流水的收款金额进行核对。
别说几百上千行了,光看这个100多行,看着就觉得累,而且特别容易出错。
解析问题
如果用 Python 来做,效率就会大大提升。我们先看看Python实现的逻辑,还是之前的例子:我们要看数据有没有重复,就是统计每个数据在两个表分别出现的次数,然后两个表中的个数相减。
· 268,在两张表中分别出现了1次,重复次数就是0,说明268这个数字不重复;
· 20.1,只在公司银行存款明细账中出现了一次,重复次数就是1次,说明20.1在公司账多记录了一次,也可能是记错了;
· 100,在公司银行存款明细中出现了2次,银行流水出现了1次,重复次数就是1次,说明100在公司账多记录了一次,也可能是记错了;
· 21,只在银行流水出现了1次,重复次数就是-1次,说明21在公司账里面漏记了;
· 8,跟21是一样的情况,也是在公司账里面漏记录了,因为银行流水就是银行直接导出的,有钱出入才会有记录,所以以银行流水为准。
知道了逻辑,我们就可以来操作了。先看看效果,30多行代码即可快速解决。
效果演示
import pandas as pd
# 读取公司明细账df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)
# 读取银行流水df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)
df_gs_jie = df_gs[['凭证号','借方']]df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})
df_yh_shou = df_yh[['收款金额','对方户名']]df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})
# 将两张表的借方-收款拼接mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0]
df_count =
mergedStuff_jie_shou.groupby(by='金额').count()
# 判断金额出现的次数df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']
# 重复次数不为0,就是没有对上df_result = df_count[df_count['重复次数'] != 0].copy()
# 判断错误问题df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1)print('借方-收款出现的错误')df_result[['错误原因']]
# 列出两张表中具体的行# 公司银行存款明细账中的多记/错记df_gs[df_gs['借方'] == 1.00]
# 银行流水中的漏记df_yh[(df_yh['收款金额'] == 637146.52) | (df_yh['收款金额'] == 27023289.88) ]
实操代码
读取两张 Excel 表的数据
import pandas as pd
# 读取公司明细账df_gs = pd.read_excel('./对账数据/公司银行存款明细账.xlsx',header=1)df_gs.head()
# 读取银行流水df_yh = pd.read_excel('./对账数据/银行流水.xlsx',header=1)df_yh.head()
数据清洗:修改列名
df_gs_jie = df_gs[['凭证号','借方']]df_gs_jie = df_gs_jie.rename(columns={'借方':'金额'})df_gs_jie.head()
df_yh_shou = df_yh[['收款金额','对方户名']]df_yh_shou = df_yh_shou.rename(columns={'收款金额':'金额'})df_yh_shou.head()
拼接两张表
# 将两张表的借方-收款拼接mergedStuff_jie_shou= df_gs_jie.append(df_yh_shou)mergedStuff_jie_shou = mergedStuff_jie_shou[mergedStuff_jie_shou['金额'] != 0] # 剔除金额为 0 的行mergedStuff_jie_shou
根据金额进行统计
df_count =
mergedStuff_jie_shou.groupby(by='金额').count()df_count
# 判断金额出现的次数df_count['重复次数'] = df_count['凭证号'] - df_count['对方户名']df_count
# 重复次数不为0,就是没有对上df_result = df_count[df_count['重复次数'] != 0].copy()df_result
# 判断错误问题df_result['错误原因'] = df_result.apply(lambda x: '漏记' if x['重复次数']< 0 else ('重复记录/多记' if x['重复次数'] > 1 else '多记/错记'), axis=1)print('借方-收款出现的错误')df_result[['错误原因']]
# 多记/错记df_gs[df_gs['借方'] == 1.00]
# 漏记df_yh[(df_yh['收款金额'] == 637146.52) | (df_yh['收款金额'] == 27023289.88) ]
将来你只要修改好需要读取的表,确定需要比对的列,然后一键运行,结果一瞬间就出来了。而且你之后每个月,每周,甚至每天要比对的时候,你只需要确定好你要比对的表,比对的数据列,就可以快速得到结果,代码复用效率极高。
你还可以进一步查看各自表中具体行的数据,方便你具体判断。
结语
不同的行业对数据分析师的技能和要求都不一样,但是数据分析的思维是可以通过岗位不断磨练出来的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10