京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,今天给大家介绍3个特别好用的Python模块,知道的人可能不多,但是特别的好用。
Python当中的Psutil模块是个跨平台库,它能够轻松获取系统运行的进程和系统利用率,包括CPU、内存、磁盘、网络等信息,它的安装也非常的简单,命令行
pip install psutil
这里因为整体的篇幅有限,小编就暂时只罗列几个常用的方法,例如我们想要查看一下CPU的利用率
psutil.cpu_percent()
返回的结果表示的是当前系统范围的CPU利用率百分比,如果我们要查看系统中CPU的个数,代码如下
## 逻辑CPU的个数 psutil.cpu_count() ## 物理CPU的个数 psutil.cpu_count(logical=False)
又或者我们想要查看一下系统中的物理内存,代码如下
## 剩余的物理内存 free = str(round(psutil.virtual_memory().free / (1024.0 * 1024.0 * 1024.0), 2)) ## 物理内存总共有 total = str(round(psutil.virtual_memory().total / (1024.0 * 1024.0 * 1024.0), 2))
而如果我们想要查看单个磁盘的信息,就直接调用disk_usage()方法
print(psutil.disk_usage('C:'))
而去获取所有磁盘的信息,调用的则是disk_partitions()方法
print(psutil.disk_partitions())
另外我们也还能够获取到系统的启动时间
from datetime import datetime
print(u"系统启动时间: %s" % datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S"))
一般我们都是用datatime模块来处理日期、时间等数据,但是不得不说在于datatime模块也有自身的一些限制,例如在处理时区时就会显得有些不足,这次我们来介绍一下Pendulum模块
首先我们用pip命令行来进行安装
pip install pendulum
pendulum模块最令人印象深刻的功能是时区,例如我们想要知道“巴黎”此时的时间,可以这么来做
now_in_paris = pendulum.now('Europe/Paris') print(now_in_paris)
output
2022-01-22T14:59:06.484816+01:00
还可以知道当天的日期
d1 = pendulum.yesterday() # 昨天 d2 = pendulum.today() # 今天 d3 = pendulum.tomorrow() # 明天
output
2022-01-21T00:00:00+08:00 # 昨天的日期
2022-01-22T00:00:00+08:00 # 今天
2022-01-23T00:00:00+08:00 # 明天
我们还可以在时间的数据上进行加、减,调用的是add和subtract方法
dt = pendulum.datetime(2022, 1, 22) dt_years_add = dt.add(years=5) print(dt_years_add) dt_years_subtract = dt.subtract(years=1) print(dt_years_subtract) dt_month_add = dt.add(months=60) print(dt_month_add) dt_month_subtract = dt.subtract(months=60) print(dt_month_subtract)
output
2027-01-22T00:00:00+00:00 2021-01-22T00:00:00+00:00 2027-01-22T00:00:00+00:00 2017-01-22T00:00:00+00:00
要是我们希望将时间数据转换成字符串,就可以这么来做,代码如下
dt = pendulum.datetime(2022, 1, 23, 15, 16, 10)
要是我们需要的是前缀的日期字符串,则可以这么来做
dt.to_date_string()
output
2022-01-23
而要是我们需要的是后缀的时间字符串,则可以这么来做
dt.to_time_string()
output
15:16:10
当然我们有时候日期和时间都需要,代码如下
dt.to_datetime_string()
output
2022-01-23 15:16:10
或者是
dt.to_day_datetime_string()
output
Sun, Jan 23, 2022 3:16 PM
当然该模块还有其他很多强大的功能,具体的大家可以去看它的文档,最后我们要说的是其人性化时间的输出功能。
如果我们平时用搜素引擎的话,就会看到有很多内容的时间被标成了“1天前”、“1周后”等等,这个在pendulum模块当中也能够轻而易举的实现
print(pendulum.now().subtract(days=1).diff_for_humans()) ## '1 day ago' print(pendulum.now().diff_for_humans(pendulum.now().subtract(years=1))) ## '1 year after' print(pendulum.now().subtract(days=24).diff_for_humans()) ## '3 weeks ago'
可能有些人要是英文看不懂的话,我们也可以切换到中文,如下
print(pendulum.now().subtract(days=14).diff_for_humans()) ## '2周前' print(pendulum.now().add(seconds=5).diff_for_humans()) ## '5秒钟后'
pyfiglet是一个专门用来生成艺术字的模块,并且支持有多种艺术字的字体,我们来看一下下面这个例子
result = pyfiglet.figlet_format("Python", font="larry3d") print(result)
output
____ __ __
/ _` / __/
L __ __ ,_ ___ ___ ___
,__/ / / _ ` / __` /' _ ` / _ _ / L / / _ /`____ __ _ _ ____/ _ _ /_/ `/___/> /__/ /_//_//___/ /_//_/ /___/ /__/
要是大家不喜欢上面的字体,可以通过下面的代码
pyfiglet.FigletFont.getFonts()
在输出的所有字体当中任选一个来进行艺术字的塑造
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04