京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,今天给大家介绍3个特别好用的Python模块,知道的人可能不多,但是特别的好用。
Python当中的Psutil模块是个跨平台库,它能够轻松获取系统运行的进程和系统利用率,包括CPU、内存、磁盘、网络等信息,它的安装也非常的简单,命令行
pip install psutil
这里因为整体的篇幅有限,小编就暂时只罗列几个常用的方法,例如我们想要查看一下CPU的利用率
psutil.cpu_percent()
返回的结果表示的是当前系统范围的CPU利用率百分比,如果我们要查看系统中CPU的个数,代码如下
## 逻辑CPU的个数 psutil.cpu_count() ## 物理CPU的个数 psutil.cpu_count(logical=False)
又或者我们想要查看一下系统中的物理内存,代码如下
## 剩余的物理内存 free = str(round(psutil.virtual_memory().free / (1024.0 * 1024.0 * 1024.0), 2)) ## 物理内存总共有 total = str(round(psutil.virtual_memory().total / (1024.0 * 1024.0 * 1024.0), 2))
而如果我们想要查看单个磁盘的信息,就直接调用disk_usage()方法
print(psutil.disk_usage('C:'))
而去获取所有磁盘的信息,调用的则是disk_partitions()方法
print(psutil.disk_partitions())
另外我们也还能够获取到系统的启动时间
from datetime import datetime
print(u"系统启动时间: %s" % datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S"))
一般我们都是用datatime模块来处理日期、时间等数据,但是不得不说在于datatime模块也有自身的一些限制,例如在处理时区时就会显得有些不足,这次我们来介绍一下Pendulum模块
首先我们用pip命令行来进行安装
pip install pendulum
pendulum模块最令人印象深刻的功能是时区,例如我们想要知道“巴黎”此时的时间,可以这么来做
now_in_paris = pendulum.now('Europe/Paris') print(now_in_paris)
output
2022-01-22T14:59:06.484816+01:00
还可以知道当天的日期
d1 = pendulum.yesterday() # 昨天 d2 = pendulum.today() # 今天 d3 = pendulum.tomorrow() # 明天
output
2022-01-21T00:00:00+08:00 # 昨天的日期
2022-01-22T00:00:00+08:00 # 今天
2022-01-23T00:00:00+08:00 # 明天
我们还可以在时间的数据上进行加、减,调用的是add和subtract方法
dt = pendulum.datetime(2022, 1, 22) dt_years_add = dt.add(years=5) print(dt_years_add) dt_years_subtract = dt.subtract(years=1) print(dt_years_subtract) dt_month_add = dt.add(months=60) print(dt_month_add) dt_month_subtract = dt.subtract(months=60) print(dt_month_subtract)
output
2027-01-22T00:00:00+00:00 2021-01-22T00:00:00+00:00 2027-01-22T00:00:00+00:00 2017-01-22T00:00:00+00:00
要是我们希望将时间数据转换成字符串,就可以这么来做,代码如下
dt = pendulum.datetime(2022, 1, 23, 15, 16, 10)
要是我们需要的是前缀的日期字符串,则可以这么来做
dt.to_date_string()
output
2022-01-23
而要是我们需要的是后缀的时间字符串,则可以这么来做
dt.to_time_string()
output
15:16:10
当然我们有时候日期和时间都需要,代码如下
dt.to_datetime_string()
output
2022-01-23 15:16:10
或者是
dt.to_day_datetime_string()
output
Sun, Jan 23, 2022 3:16 PM
当然该模块还有其他很多强大的功能,具体的大家可以去看它的文档,最后我们要说的是其人性化时间的输出功能。
如果我们平时用搜素引擎的话,就会看到有很多内容的时间被标成了“1天前”、“1周后”等等,这个在pendulum模块当中也能够轻而易举的实现
print(pendulum.now().subtract(days=1).diff_for_humans()) ## '1 day ago' print(pendulum.now().diff_for_humans(pendulum.now().subtract(years=1))) ## '1 year after' print(pendulum.now().subtract(days=24).diff_for_humans()) ## '3 weeks ago'
可能有些人要是英文看不懂的话,我们也可以切换到中文,如下
print(pendulum.now().subtract(days=14).diff_for_humans()) ## '2周前' print(pendulum.now().add(seconds=5).diff_for_humans()) ## '5秒钟后'
pyfiglet是一个专门用来生成艺术字的模块,并且支持有多种艺术字的字体,我们来看一下下面这个例子
result = pyfiglet.figlet_format("Python", font="larry3d") print(result)
output
____ __ __
/ _` / __/
L __ __ ,_ ___ ___ ___
,__/ / / _ ` / __` /' _ ` / _ _ / L / / _ /`____ __ _ _ ____/ _ _ /_/ `/___/> /__/ /_//_//___/ /_//_/ /___/ /__/
要是大家不喜欢上面的字体,可以通过下面的代码
pyfiglet.FigletFont.getFonts()
在输出的所有字体当中任选一个来进行艺术字的塑造
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06