京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:李晓飞
来源:Python 技术
如果说程序员有什么怕的,那我想可能就是 —— 需求又变了!
这不,客户在笔者开发完一个基于浏览器的 Web 应用程序之后说:程序需要在内(无)部(网)环境中运行……
这就意味着无法安装 Python 环境!
谁叫咱是程序员呢,不就开发一个 GUI 版本吗,难不倒我……
可是听到给的时间后,就不淡定了……
为了不影响客户的评测,只能给出一周时间!
GUI 虽然也不难,不过需要梳理一遍服务以及与用户的交互接口,弄不好就得为 GUI 单独编写接口,这点时间显然不够呀。
不行,就再想想办法……
不然直接将 Web 应用包装成一个可执行程序,拷贝到机器上就能运行,而且类似的框架很多,比如 Nodejs 中的 Electron[1],Python 中的 Pywebview[2]。
只要将原来的 Web 程序包装一下就好了,那么说干就干!
Web 程序是用 Flask 开发的,所以需要安装 Python 的 Pywebview 作为打包工具。
建立虚拟环境[3] 或者在原来的 Web 项目环境中,执行:
pip install pywebview
在 Windows 系统中,需要 .Net 4.0 以上
小试牛刀:
import webview window = webview.create_window('Hello!', 'http://http://www.justdopython.com')
webview.start()
就能看到如下的效果:
小试牛刀
神奇吧!
Pywebview 支持三种模式,简单模式,服务器模式 和 线程模式。
简单模式 就相当于一个定制流浏览器,指定一个地址,就可以实现浏览了,如上面的例子。
服务器模式 相当于包装了一个 Web 应用,就是会启动一个本地服务器,在定制的浏览器中浏览。
线程模式 比较高级,就是需要自己手动维护线程状态,实现更高级的玩法。
对于现在的需求,我们选择服务器模式,即包装本地的一个 Web 应用。
服务器模式会为我们提供一个 HTTP Server,只要把 Web 应用部署上去就好了。
因为无非展示实际项目的代码,这里写一个简单的 Flask 应用:
关于 Flask Web 应用开发,可以参考笔者之前写的 Flask 文章
创建一个 app.py 文件:
from flask import Flask, render_template, jsonify, request
app = Flask(__name__) # 创建一个应用 @app.route('/') def index(): # 定义根目录处理器 return render_template('index.html') @app.route('/detail') def detail(): return render_template('detail.html') if __name__ == '__main__':
app.run() # 启动服务
这个应用很简单,只有两个页面,分别通过 / 和 /detail 来访问。
如果运营这段代码,就会启动一个 Flask 应用,通过 http://120.0.0.1:5000 来访问。
如何套在 Pywebview 中呢?
很简单:
import webview from app import app if __name__ == '__main__': window = webview.create_window('Pywebview', app, height=600, width=1000)
webview.start()
这里的关键是,将 Flask 应用作为 url 参数,Webview 发现传入的参数是 flask 应用,就会启动服务模式。
运行程序后,可以看到和在浏览器中的效果一样的:
对接 Flask
现在就可以将这个项目打包成 exe 了。
首先需要安装 pyinstaller[4]
pip install pyinstaller
然后进入程序目录执行:
pyinstall -F -w main.py
很快在程序目录下,就会生成一个 dist 文件夹,其中就会有个 main.exe 可执行文件,这就是打包好的结果。
双击运行,可以看到效果……
等等,好像并不是想象中的那样!
对接 Flask
这是怎么回事呢?
根据提示来看,是因为找不到页面的模板文件。
我们在前面创建 Flask app 时,使用的是默认的模板路径,即 app.py 文件所在目录的 templates 目录,为啥打包之后就找不见了呢?
这是因为在 windows 中,可执行文件的运行时,会被解压到一个特定的目录下,而我们的模板文件并没有被打包进入 exe 文件中,所以导致运行时找不见模板文件。
如何解决这个问题呢?
作为不使用外部数据或文件的程序,只需要将程序本身打包就可以了,但大部分程序都需要外部数据,比如我们的 Flask 应用,就需要用到静态文件等。
那么如何将它们打包进可执行文件呢?
只需要在打包时多加一个参数就可以了:
pyinstaller main.py -F -w --add-data "./templates/*;templates"
-- add-data 参数表示添加额外的数据 -- ./templates/* 表示需要添加当前目录的 templates 目录中的所有文件 -- ;为分隔符,其后的 templates 表示解压是这些数据所在的目录,这个目录名必须和 创建 app 时 template_folder 参数一致 -- 如果需要用到静态文件,需要额外添加,比如 --add-data "./static/*;static"
这样就能将外部数据一起打包进来了。
打包好后,双击执行,就会发现网页得以完美呈现了。
注意:
如果使用了虚拟环境,必须在虚拟环境中单独安装 pyinstaller,而不能用其他环境中已经安装好的,这是为了包装打包是可以链接所以程序引用的模块
因为 pyinstaller 打包时,找不到被引用的模块时并不报错,而打包好的程序可能会无法执行。
经过一番折腾,终于在客户要求的时间之前将工作完成了,特别高兴。
回头一想,多亏用了 Python 作为主要的开发语言,因为 Python 强悍的社区支持没有找不到的解决方法。
这次经历的另一个启示就是,遇到问题,不要着急就做,可以先想一想,是否有更好的方法,特别在使用 Python 的时候。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05