
CDA数据分析师 出品
作者:Terence Shin
编译:Mika
学习数据分析绝非易事,有无数种工具和资源可供使用。因此,有时会让我们很难弄清楚该学习什么技能,该使用哪种工具。
在本文中,我们就来给大家介绍一下——数据分析中最常用的10个Python库。看看这些库你都用过吗?
01、Pandas
在数据分析师的日常工作中,70%到80%都涉及到理解和清理数据,也就是数据探索和数据挖掘。
Pandas主要用于数据分析,这是最常用的Python库之一。它为你提供了一些最有用的工具来对数据进行探索、清理和分析。使用Pandas,你可以加载、准备、操作和分析各种结构化数据。
02、NumPy
NumPy主要用于支持N维数组。这些多维数组的稳健性是Python列表的50倍,这也让NumPy成为许多数据科学家的最爱。
NumPy被TensorFlow等其他库用于张量的内部计算。NumPy为数值例程提供了快速的预编译函数,这些函数可能很难手动求解。为了获得更好的效率,NumPy使用面向数组的计算,从而能够轻松的处理多个类。
03、Scikit-learn
Scikit-learn可以说是Python中最重要的机器学习库。在使用Pandas或NumPy清理和处理数据之后,可以通过Scikit-learn用于构建机器学习模型,这是由于Scikit-learn包含了大量用于预测建模和分析的工具。
使用Scikit-learn有很多优势。比如,你可以使用Scikit-learn构建几种类型的机器学习模型,包括监督和非监督模型,交叉验证模型的准确性,进行特征重要性分析。
04、Gradio
Gradio让你只需三行代码即可为机器学习模型构建和部署web应用程序。它的用途与Streamlight或Flask相同,但部署模型要快得多,也容易得多。
Gradio的优势在于以下几点:
05、TensorFlow
TensorFlow是用于实现神经网络的最流行的 Python 库之一。它使用多维数组,也称为张量,能对特定输入执行多个操作。
因为它本质上是高度并行的,因此可以训练多个神经网络和GPU以获得高效和可伸缩的模型。TensorFlow的这一特性也称为流水线。
06、Keras
Keras主要用于创建深度学习模型,特别是神经网络。它建立在TensorFlow和Theano之上,能够用它简单地构建神经网络。但由于Keras使用后端基础设施生成计算图,因此与其他库相比,它的速度相对较慢。
07、SciPy
SciPy主要用于其科学函数和从NumPy派生的数学函数。该库提供的功能有统计功能、优化功能和信号处理功能。为了求解微分方程并提供优化,它包括数值计算积分的函数。SciPy的优势在于:
08、Statsmodels
Statsmodels是擅长进行核心统计的库。这个多功能库混合了许多 Python 库的功能,比如从 Matplotlib 中获取图形特性和函数;数据处理;使用 Pandas,处理类似 R 的公式;使用 Pasty,并基于 NumPy 和 SciPy 构建。
具体来说,它对于创建OLS等统计模型以及执行统计测试非常有用。
09、Plotly
Plotly绝对是构建可视化的必备工具,它非常强大,易于使用,并且能够与可视化交互。
与Plotly一起使用的还有Dash,它是能使用Plotly可视化构建动态仪表板的工具。Dash是基于web的Python接口,它解决了这类分析web应用程序中对JavaScript的需求,并让你能在线和离线状态下进行绘图。
10、Seaborn
Seaborn建立在Matplotlib上,是能够创建不同可视化效果的库。
Seaborn最重要的功能之一是创建放大的数据视觉效果。从而让最初不明显的相关性能突显出来,使数据工作人员能够更正确地理解模型。
Seaborn还有可定制的主题和界面,并且提供了具有设计感的数据可视化效果,能更好地在进行数据汇报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10