
用于衡量两类现象在发展变化的方向与大小方面存在一定的关联(不包括因果和共变关系)。
1.正线性相关
例如销售额中涵盖了销售利润和各类成本等,从数据大致可以看出,销售利润随着销售额的增长而增长,由于各类不确 定因素,数据点基本落在直线周围,我们称之为正线性相关。
2.负线性相关
例如通常情况下,某地区的犯罪率越高,则该地区的房价越低,但由于供需环境等其他不确定因素,数据点基本落在直 线周围,我们称之为负线性相关。
3.完全线性相关
虽然所有点都在直线上,但是我们不能说两个变量是函数关系,这是因为我们看到的是样本,并且我们假设两个变量是 随机变量,而我们需要推导的是两个总体的关系。
4.非线性相关
例如虽然网站的点击量随着网站的广告投入的增加而增加,但其数据点分布在对数线周围,呈现出对数相关性。
估计标准误差与相关系数的关系
一元线性回归中,对于同一个问题,估计标准误差就意味着样本点到回归线的距离越近,那么两个变量的 线性相关性就越强,相关系数越大。
1.相关系数
一般情况下,如果不做特殊说明,指的就是线性相关。 如果相关系数是根据变量的样本数据计算的,即为了推断总体,那么则称为样本相关系数(虽然有的时候在部分资料里 并不严格说明),记为 r(有的教材里也称为Pearson相关系数)
虽然没有严格的规定,但是我们往往习惯按照下面的方式对相关性强度进行分级:
由于 r 只是样本线性相关系数,无论其数值等于多少,我们需要推断的始终是总体的相关性如何,这时候我们就需要运 用显著性检验的知识了。我们运用R.A.Fisher提出的 t 检验方法来检验两个变量总体之间是否存在线性相关关系。
原假设:H0 : ߩ = 0,两变量间无直线相关关系 检验统计量:
适用条件:数据间相互独立,包括观测间相互独立与变量间相互独立;变量为连续变量(积差相关的条件);两变量间 的关系是线性的。
(1)散点的密集程度,反应相关性的大小;
(2)散点是否具有线性关系,或线性趋势,还是其 他形式,如果是其他形式是否可以转换成线性 形式;
(3)线性关系之外是否存在异常值及其存在与线性 趋势的哪个方向;
(4)数据是否存在稀疏问题。
回归分析能解决什么问题?
探索影响因变量的可能因素;
利用回归模型进行预测。
相关与回归间的关系?
相关分析侧重反映散点的疏密程度。
回归分析侧重反映散点的趋势程度。
1.线性回归的基本过程
第一步:总平方和分解
第二步:计算判定系数
第三步:残差标准误
由于 SSE 是一个求和表达式。样本越多,SSE 的取值就往往会越大,因此,SSE 并不适合相对 客观的反映估计值与样本值的偏离程度,我们需要将 SSE 处理成相对值。于是我们令
,其中 n-2 是自由度。这个公式可以粗略的理解为,通过除以自由度,得到残差平 方的均值;再开根号则可以将方差转化成标准差,也成为估计标准误差。
第四步:线性关系检验
线性回归模型的假设
1.回归分析前,哪种数据处理是不合理的( )。 A. 标准化处理
B. 取对数处理
C. 排秩处理
D. 取整处理
答案:CD 解析:标准化可以消除数据规模的影响,对数处理往往可以解决数据正态假设的问题。
2.线性回归分析主要用于哪种情境( )。
A. 客户价值评估
B. 贷款违约识别
C. 不同班级在英语得分上是否存在差异
D. 根据用户特征进行市场细分
答案:A 解析:B项说的是逻辑回归的内容,C项是方差分析的内容,D项是说聚类分析等 方法。
3.线性回归假设正确的是( )。
A. 线性:因变量与自变量间的线性关系
B. 正态性:残差必须服从正态分布
C. 独立同分布:残差间相互独立,且遵循同一分布
D. 正交假定:误差项与自变量不相关,其期望为0 答案:ABCD 解析:考察线性回归的基本假设。
4.以下关于线性回归阐述正确的是( )。
A. 如果我们建立了y关于x的线性回归方程,那么我们就可以将y变化的原因归结于x的变化。
B. 如果我们建立了y关于x的线性回归方程,在没有其他信息的情况下,我们只能说这两个变量存在线性关系。
C. 如果变量x与y无法建立线性回归方程,那就说明x和y没有关系
D. 如果想研究市场规模与市场环境因素的关系,那么我们就可以以30年的市场规模数据作为因变量y(年化数据), 对应的市场环境数据作为自变量x,建立线性回归方程(共30个样本)。
答案:B 解析:A项是把关系当做因果了,C项有可能有别的非线性关系,D项更适合做面板模型, 线性回归适合做截面数据。
5.回归平方和SSR反映了y的总变差中( )。
A. 由于 x 和 y 之间的线性关系引起的 y 的变化部分
B. 除了 x 和 y 之间的线性影响之外的其他因素对 y 变差的影响
C. 由于 x 和 y 之间的非线性关系引起的 y 的变化部分
D. 由于 x 和 y 之间的函数关系引起的 y 的变化部分
答案:A 解析:熟悉SSR、SSE的相关概念。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26