京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.市场调研的基本步骤
市场调研是一种非常常用的信息获取渠道。调研的结果可以整理成分析项目的输入,甚至可以作为决策的依据。因此想 要做好市场调研,科学的流程是非常必要的。一般我们会通过提出问题、调查收集资料和分析预测问题三个步骤来进行。
第一步:提出问题
通常我们在面对一些重大决策,或者探索类的项目,特别是营销项目时,我们会启动市场调研。这个时候,我们可能提出的一些问题包括:
(1) 目前企业的现状是什么样子?
(2)市场现状是什么样子?
(3)消费者的需求是如何分布的?
(4)当前的客服环节存在什么问题?
(5)…………
当然,提出这些问题之后,大家需要注意一点。并不是所有的问题都是适合进行市场调研的。所以我们在提出了问题之后,需要结合问题 来思考以下两点:
第一,收集资料的范围是什么。进一步地说,我们的成本和时间是否允许。
第二,项目的研究要求。我们希望达到什么样的最终产出。 只有回答了这两个问题,我们才能够更好地确定问题,也才能从开始的阶段就保证市场调研的有效性。
第二步:调查收集资料
在确认了问题和调研目标之后,我们就要根据收集资料的范围来进行资料的搜集。一般传统的市场调研,主要通过线下问卷和访谈的形式 来进行收集。在收集资料的过程中,我们要:
(1)确定参与调研的人员和各自的参与形式;
(2)选择调研群体;
(3)分配时间和经费;
(4)制订具体的调研计划;
(5)展开调研。
对于调研收集的数据,为了保证准确和有效性,也需要进行一定的逻辑验证和清洗。在互联网时代,市场调研的方式变得更加多样化。问 卷可以采用线上触达的方式,这种方式不光可以降低成本,还可以做到更精准地投放到调研群体。另外,对于一些访谈的录音和文本,也 可以采用机器学习的方式进行自动化处理。
第三步:分析预测问题
在收集到足够的资料后,我们就要对这些信息进行分析,并用来帮助预测和决策。常见的市场调研分析方法,与统计学的方法也比较 类似。我们可以先对收集后的资料进行分类,区分数据和非数据信息。
对于数据信息,我们可以通过描述性统计、主成分分析、因子分析、回归分析、时间序列、逻辑回归、对应分析、多维尺度分析等方 法进行。
而对于非数据的信息,我们可以采用人工整理的方式,也可以通过自然语言处理NLP(Nature Language Processing)的技术进行 高效解读。
1.单选题
是市场调研问卷中最简单、易回答的问题,也是我们最容易进行录入和分析的问题。在设计单选题的时候,我们需要注意选项间的关系, 尽量做到不重不漏,避免答题者产生混淆和困扰。对于单选题的答案,我们可以用数字来进行表示。但是需要特别注意的是,这些数字 本身并不具备大小含义,只应该作为名义测量进行处理。 2.多项选择题
相比单选题而言,会复杂一些。可以是限定个数的多选题,也可以是由答题者自己决定数量的多选题。由于现在的研究趋势,通常是把 选项用数字化代替进行录入,因此在设计多项选择题的时候,应当更加谨慎。尽可能地用单选题替代。
在必须使用多项选择题的时候,选项的罗列要有一定的逻辑关系,避免无意义地增加选项,给后续的录入和分析造成麻烦。
对于收集回来的数据,我们需要进行编码和录入。编码录入,一般指的是,根据字段含义确定合适的数据类型,进行简化替代和录入的 过程。
通常,数据的编码类型有数值变量、字符变量、二分变量和分类变量。
开放式问题,我们在录入过程中都会根据答案内容来判断是作为字符变量还是数值变量进行录入。
比如年龄,可以直接作为数值变量, 而城市,则需要作为字符变量进行录入。 选择题,虽然选项可能对应的是一个具体的词语,但是我们仍然可以表示成数字的形式,方便录入和分析。而每个数字和选项词语的对 应关系,可以作为数据词典,单独保存,以备查证和分析过程中的解读。
录入的变量,如果只有两种取值的可能,我们可以叫做二分变量。而如果有多重取值的可能,我们可以叫做分类变量。字符变量,可以 根据具体情况转换为二分变量或者分类变量。比如取值为是或者否的字符变量,可以转换为二分变量。而取值为城市名称的字符变量, 也可以酌情转换为分类变量。但是如果字符变量的取值范围是不确定、开放式的,那么就不能进行转化和简化。所以编码通常应用于封 闭性问题,也就是答案范围确定的问题。
对于单选题,我们可以直接作为分类变量处理。而多选题,我们可以根据情况记录为分类变量,也可以把每个选项作为一个字段,存储为二分变量。
1.以问题 “平均每次通话时间(分)”,从方便数据处理的角度,下列方法最适宜的是?
A.需要编码为数值变量
B.需要编码为字符变量
C.需要编码为二分变量
D.需要编码为分类变量
答案:A 解析:平均每次通话时间是个连续变量,为方便后续处理,编码为数值型是最适宜的。
2.市场调查报告要发挥其应有的作用,除了必须说明一切必要的细节、能发挥参考作用外,还必须( )。
A. 能够证明调查研究结果的可信性
B. 详细说明调查的具体过程
C. 详细论证调查方法的科学性
D. 能够证明调查结论的可行性
答案:A 解析:信息的有效性是保证后期统计分析的重要前提。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30