
CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家用python分析《世界幸福指数报告》。《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?哪些因素对幸福指数的影响最大?今天我们就带你用Python来聊一聊。
01、数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
02、数据导入和数据整理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) plt.style.use('seaborn')
# 读入数据 df_2015 = pd.read_csv('./deal_data/2015.csv') df_2016 = pd.read_csv('./deal_data/2016.csv') df_2017 = pd.read_csv('./deal_data/2017.csv') df_2018 = pd.read_csv('./deal_data/2018.csv') df_2019 = pd.read_csv('./deal_data/2019.csv') # 新增列-年份 df_2015["year"] = str(2015) df_2016["year"] = str(2016) df_2017["year"] = str(2017) df_2018["year"] = str(2018) df_2019["year"] = str(2019) # 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False) df_all.drop('Unnamed: 0', axis=1, inplace=True) df_all.head()
print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape) (158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 782 entries, 0 to 155 Data columns (total 10 columns): region 782 non-null object rank 782 non-null int64 happiness 782 non-null float64 gdp_per_capita 782 non-null float64 healthy_life_expectancy 782 non-null float64 freedom_to_life_choise 782 non-null float64 corruption_perceptions 781 non-null float64 generosity 782 non-null float64 year 782 non-null object social_support 312 non-null float64 dtypes: float64(7), int64(1), object(2) memory usage: 67.2+ KB
03、数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
data = dict(type = 'choropleth', locations = df_2019['region'], locationmode = 'country names', colorscale = 'RdYlGn', z = df_2019['happiness'], text = df_2019['region'], colorbar = {'title':'Happiness'}) layout = dict(title = 'Geographical Visualization of Happiness Score in 2019', geo = dict(showframe = True, projection = {'type': 'azimuthal equal area'})) choromap3 = go.Figure(data = [data], layout=layout) plot(choromap3, filename='./html/世界幸福地图.html')
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
# 合并数据 rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']] last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']] rank_concat = pd.concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x="region", y="happiness", color="region", title="World's happiest and least happy countries in 2019") plot(fig, filename='./html/2019世界幸福国家排行Top10和Last10.html')
幸福指数相关性
我们可以得出以下结论:
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
# 散点图 fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='GDP per capita and Happiness Score') plot(fig, filename='./html/GDP和幸福得分.html')
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
散点图 fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='Healthy Life Expecancy and Happiness Score') plot(fig, filename='./html/健康预期寿命和幸福得分.html')
GDP和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs GDP per Capita') plot(fig, filename='./html/GDP和幸福水平动态图展示.html')
健康预期寿命和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs healthy_life_expectancy') plot(fig, filename='./html/健康预期寿命和幸福水平动态图展示.html')
04、数据建模
我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。
sel_cols = ['happiness', 'gdp_per_capita', 'healthy_life_expectancy', 'freedom_to_life_choise', 'corruption_perceptions', 'generosity'] # 重置索引 df_model.index = range(df_model.shape[0]) df_model = df_all[sel_cols] # 删除空值 df_model = df_model.dropna() df_model.head()
from statsmodels.formula.api import ols # 建立多元线性回归模型 lm_m = ols(formula='happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity', data=df_model).fit() lm_m.summary()
模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:
比较预测值和真实值的分布:
df_pred = pd.concat([df_model['happiness'], y_pred], axis=1) df_pred.columns = ['y_true', 'y_pred'] # 散点图 fig = px.scatter(df_pred, x='y_true', y='y_pred', trendline='ols') fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/预测值和真实值分布图.html')
以下为模型残差分布图。
fig = px.histogram(x=lm_m.resid) fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/多元线性回归残差分布图.html')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15