
数据分析-AHP层次分析法
层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Satty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
什么是AHP层次分析法?
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。
层次分析法的基本步骤
运用层次分析法构造系统模型时,大体可以分为以下五个步骤:
1.建立层次结构模型
2.构造判断矩阵
3.一致性检验
4.计算各层权重
5.总体一致性检验
1.建立层次结构模型
层次分析法强调决策问题的层次性,我们必须认清决策目标与决策因素之间的关系。简单地说,就是处理各个因素之间的包含关系,再把它们放在一个层次结构图中。一般地,我们把层次结构图分成3个层次,作为本文的例子,我们以选择旅游地作为问题,演示层次分析法的过程:
目标层:决策的目的、要解决的问题。(选择旅游地)
准则层:考虑的因素、决策的准则。(选择旅游地时会考虑到不同的因素,如景色、费用等)
方案层:决策时的备选方案。(各个景点)
2.构造判断矩阵
建立层次结构图,之后我们就必须讨论同一层因素的权重。仍用上述例子,这时我们要得出c1,c2,c3……对O的影响权重,可把权重记为:
w=[w1 w2 ...wn-1 wn]
可是,当影响因素很多时,权重就非常难估计,而且常常不容易被别人接受。因此Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较。(aij在 1-9 及其倒数中间取值)
aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;
aij = 3,元素 i 比元素 j 略重要;
aij = 5,元素 i 比元素 j 重要;
aij = 7, 元素 i 比元素 j 重要得多;
aij = 9,元素 i 比元素 j 的极其重要;
aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
,n=1,2,...,9, 当且仅当aji = n
成对比较矩阵的特点:(备注:当i=j时候,aij = 1)
这时我们就可以得到判断矩阵,也就是每两个因素的权重比:
(1)
为帮助理解,此处加入一个权重比表(实际使用过程中可省略),假设所得的权重比如下表所示,第二行第一列表示费用与景色的重要性比为2,第一行第二列表示景色与费用的重要性比为1/2,以此类推,转换后可得到矩阵A。
|
景色 |
费用 |
居住 |
饮食 |
旅途 |
景色 |
1 |
1/2 |
4 |
3 |
3 |
费用 |
2 |
1 |
7 |
5 |
5 |
居住 |
1/4 |
1/7 |
1 |
1/2 |
1/3 |
饮食 |
1/3 |
1/5 |
2 |
1 |
1 |
旅途 |
1/3 |
1/5 |
3 |
1 |
1 |
(2)
有了判断矩阵,我们就可以得到各个因素的权重。矩阵A右乘w
Aw=nw (3)
也就是说我们只要令(A-n)w=0和|w|=1,就可以算w。
例如:一个三阶的矩阵a、b、c,判断矩阵为
令(A-3)w=0,就有w=[0.6 0.3 0.1]
3.一致性检验
仔细查看(2),其实是有问题的。判断矩阵可能会出现不一致的情况,表现为(3)不成立。
如果说a比b重要2倍,b比c重要3倍,然后说c比a重要2倍,这就有问题了。这就是所谓的不一致现象。(2)就是出现了这一现象。那么,这时权重又如何确定?
学过线性代数的话,我们知道(3)中,n是A的特殊值,而w是A的特殊向量。在出现不一致的情况下,Saaty等人建议用对应于最大特征根l的特征向量作为权向量w,即
由于λ连续的依赖于aij,则λ比n大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n数值的大小来衡量A的不一致程度。
定义一致性指标:
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
定义随机一致性指标 RI:它的值与n的关系如下:
定义一致性比率 :
一般,当一致性比率<0.1时,认为A的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aij加以调整。
一致性检验也就是利用一致性指标和一致性比率<0.1,及随机一致性指标的数值表,对A进行检验的过程
4.计算各层权重
我们最终目的是要确定P1,P2,P3对O的影响权重。
我们先从C1开始,计算出P1,P2,P3的权重,记为
wc1=[wp1 wp2 wp3]T;
同理算出C2权向量wc2,C3的权向量wc3……再回到O,计算出
WO=[wo1,wo2,wo3,wo4,wo5]T
这时P1对O的影响权重就是
k1=wp1*wo1+wp2*wo2+……wp5*wo5
用矩阵的语言来说,说是P1,P2,P3对O的影响权重为:
K=WC*WO
其中,WC=[wc1 wc2 wc3 wc4 wc5]
5.总体一致性检验
定义总体一致性比率:
其中CIi是下层的一致性指标,RIi是下层的随机一致性指标,ai是权重。
同样的,如果CR<0.1,那么一致性在容许范围之内。
层次分析法的注意事项
如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
为保证递阶层次结构的合理性,需把握以下原则:数据分析培训
1.分解简化问题时把握主要因素,不漏不多;
2.注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18