
大数据提升企业竞争力
大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。企业怎样利用大数据提升竞争力?这里从企业决策、成本控制、服务体系、产品研发四个方面加以简要讨论。
企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。
成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。
服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。
产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22