
在产品导入时期,为实现运营目标,经常还会通过内部数据分析进行目标用户定位及选取,主要运用数据挖掘中的分类筛选构建模型,形成业务运营闭环,并不断迭代修正。其中涉及营销测试和存量用户两种建模方法。
营销测试方法通过广告宣传引导用户开通或试用产品,并分析其中响应的用户特点。与营销测试有所不同,存量用户建模的反馈数据不需要经过市场测试,而是根据存量用户是否使用该产品而构造。
为了更好地使用数据挖掘技术,一些具备丰富经验的厂商和协会提出了CRISP-DM数据挖掘过程模型,并以此确立了数据挖掘实施过程中的整体规范和设计标准。
总的来说,数据挖掘过程模型提供了一个基于数据挖掘生命周期的总概览,从方法论的角度将整个过程分成六个阶段以及每一阶段包含的具体任务,还有后续所涉及的延伸应用。第一步商业理解主要是将业务分析目标与数据挖掘目标有效结合起来。
接下来的数据理解阶段,便是要着重考虑构建模型前的样本数据,即以用户的性别、年龄、收入和职业作为特征变量来理解目标用户的对产品的数据需求。变量的选择与提取需要产品经理和数据分析师共同确定,同时与数据库操作人员进行协调。
目标变量即因变量随着特征变量即自变量的变化而变化,而数据挖掘模型起到的作用便是将目标变量“订购”与“未订购”所对应的用户根据特征区分出来。
同时,从数据源中所提取出的数据必须经过严格校验和清理,包括补充空缺、处理异常值、数据降噪、调整一致等。某些时候因为主观或客观的原因,数据记录中会存在空值,为了避免影响结果的准确性,将其定义为缺失值,并按照一定的原则进行处理,比如选取整个变量的平均值来填补空缺。
实际操作中,准确判断出哪些变量是模型的最佳输入是十分困难的,通常情况下建议把可能的重要因素都考虑在内,也可以结合数据探索来了解变量的分布状态。对于连续型变量,常用的描述统计量有最大值和最小值,均值反映变量的集中趋势,方差反映数据的波动情况。产品经理通过数据探索可对目标市场有大致了解,为后续分析提供相对直观的基本信息。
数据在经过处理之后,还需要对单一变量进行探索分析,以此描述具体变量的分布情况,产品经理通过直接观察变量分布能够了解目标用户群体的大致特征,为后续的深入挖掘做准备。
如上所示,样本用户的年龄分布主要集中在20至40岁之间,男性用户较多,男女比例接近2:1。有时,为了满足特定的分析需求,产品经理也可以协同数据分析师,根据自身业务经验调整样本加权以及更改抽样方案。
目标用户的选取实际上也就是根据用户特征属性来判断用户所属类别的决策过程。一般来说,一个决策过程由一个决策结论和若干个决策依据组成,在这里,决策结论意指分类结果,决策依据则是特征属性。
数据挖掘中的决策树算法是一个广泛应用的判别方法,可以将一个决策流程映射到一个树形结构上,同时满足特征属性描述的简洁性和分类结果预测的准确性。其中树根及分枝代表着特征属性,叶子对应着分类结果。
决策树算法主要实现了数据挖掘中的分类筛选功能,并能够预测新数据的类别,产生最终的分类规则具有良好的可读性,有助于业务理解。在具体的实现过程中,从根到叶的每一条路径表示着特征属性和分类结果之间的逻辑策略和映射关系。判断建立分支节点时,选择最佳的特征属性尤为重要,也是构建决策树的关键步骤,通常会基于最大信息增益的原理。
从根到叶每一条路径代表着一个分类规则,所有的路径组成一个规则集。基于训练样本数据,从中挑选出出现次数较多的一些路径作为最优规则,并以概率的形式作为衡量指标。
如上所示,路径从根(年龄>=30)经过分枝(收入<5000),再到叶子(接受),最终形成一个订购产品的分类规则,且概率大小为69.7%,即表示样本数据中满足规则的用户占总用户数的比率情况。
如上所示,模型最终会生成并输出分类规则的展现形式和衡量尺度。总的来说,决策树算法以样本数据为基础,采用自顶向下的方式,基于一组无次序、无规则的数据,推理出合乎业务逻辑的分类规则,便于预测未知对象的类别标记。其中,选取合适的特征属性构建根及分枝节点,叶子即划分类别,从根到叶的一条路径对应着一个规则,整个决策树便形成一系列规则。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18