
数据挖掘在电信客户流失分析中的应用
数据挖掘是近年来伴随着人工智能和数据库技术发展而出现的一门新兴技术。它的核心功能是从巨大的数据集或数据仓库中获取有用信息,以供企业分析和处理各种复杂的数据关系。随着电信市场竞争的日益加剧,运营商普遍开始向“客户驱动”管理模式转变。最近几年,数据挖掘技术以其强大的数据分析功能被普遍应用到电信运营商客户管理之中。
数据挖据的主要方法
作为一种先进的数据信息处理技术,数据挖掘与传统的数据分析的本质区别在于它是数据关系的一个探索过程,而且多数情况下是在未有任何假设和前提的条件下完成的。数据挖掘具备多种不同的方法,供使用者从不同的纬度对数据展开全面分析。
(1)相关分析和回归分析。相关分析主要分析变量之间联系的密切程度;回归分析主要基于观测数据与建立变量之间适当的依赖关系。相关分析与回归分析均反映的是数据变量之间的有价值的关联或相关联系,因此两者又可统称为关联分析。
(2)时间序列分析。时间序列分析与关联分析相似,其目的也是为了挖掘数据之间的内在联系,但不同之处在于时间序列分析侧重于数据在时间先后上的因果关系,这点与关联分析中的平行关系分析有所不同。
(3)分类与预测分析。分类与预测用于提取描述重要数据类的模型,并运用该模型判断分类新的观测值或者预测未来的数据趋势。
(4)聚类分析。聚类分析就是将数据对象按照一定的特征组成多个类或者簇,在同一个簇的对象之间有较高的相似度,而不同的簇之间差异则要大很多。在过程上看,聚类分析一定程度上是分类与预测的逆过程。
数据挖掘的应用
目前,电信运营商面临激烈的市场竞争,客户争夺愈演愈烈,每个企业都存在客户流失的问题。传统意义上来讲,留住一个客户所需要的成本是争取一个新用户成本的1/5,尤其对于剩余客户市场日渐稀疏的通信市场来说,减少客户流失就意味着用更少的成本减少利润的流失,这点已经为运营商所广为接受。然而问题所在是当运营商面临海量的客户资料时,应如何才能够从中提取出有效的信息以判断客户流失的状况或者倾向。在此,数据挖掘所提供的数据探索能力得到了充分的发挥,下面简要地描述数据挖掘在客户流失分析管理中的应用过程。
(1)定义主题客户流失分析中的主题应当包括流失客户的特征;现有客户的流失概率如何(包括不同细分客户群的流失程度);哪些因素造成了客户的流失等。主题是数据挖掘的主要目标,决定了此后过程中数据挖掘的主要努力方向,因此在定义上应当十分明确。
(2)数据选择。数据选择是数据挖掘的前提,主要是确定数据字段的收集,因为并不是所有的客户信息都会对客户的流失产生影响,应尽可能地降低数据的复杂度以发掘较高的关联度,但是考虑到后期客户流失的多维分析,应当尽量确保客户信息的完整性,因此,应对客户的有价值信息予以区分收集,剔除部分冗余数据,减少数据噪音。此间要注意的是在客户流失分析上,从数据仓库中采集数据的主要目的是调查客户信息的变化情况,因此对数据采集时间间隔的设置显得尤为重要。若采集时间过长,可能在流失判断出来时客户已然流失;若采集时间过于紧密或者实时采集则需要考虑运营商现有系统的支撑能力。
(3)分析数据。分析数据主要是对提取的数据进行分析,找到对预测输出影响最大的数据字段,并决定是否需要定义导出字段。在分析数据时需要谨慎选择对预测相关的流失客户数据参与建模才能有效建立模型。分析数据过程还应包括数据清洗和数据预处理。数据清洗和预处理是建模前的数据准备工作,主要包括数据抽样、数据转换、缺损数据处理等。数据抽样是根据事先确定的数据进行样本抽取,选择抽样而不是对整体进行处理,以降低系统的处理量。另外样本一般分为建模样本和测试样本,一部分用来建模,另一部分用来对模型进行修正和检验。数据转换是为了保证数据的质量和可用性,比如某些数据挖掘模型需要对连续数据进行离散化、归一化处理等。缺损数据有时可以不做处理,由后面具体选择的数据挖掘模型来处理。
(4)模型建立。对数据进行分析并利用各种数据挖掘技术和方法在多个可供选择的模型中找出最佳模型。初始阶段可能模型拟合度不高,需要反复更换模型,直到能够找到最合适的模型来描述数据,并从中找到规律。建立模型通常由数据分析专家配合业务专家来完成,常用的流失分析模型主要有决策树、贝叶斯网络和神经网络等。
(5)模型的评估与检验。模型建立之后,一般要通过训练集的测试才能考虑下一步应用。比较常规的验证方法是输入一些历史的流失客户数据,运行此模式予以判断,比较数据挖掘的结果与已知历史结果的差异。客户流失判断一般存在两种错误结果。一是弃真错误,即原有历史客户具备流失倾向并且已经流失,但是模型未能够准确预测客户的流失倾向;二是存伪错误,即原有用户并未有流失的倾向,但被模型判断为具有流失倾向。
(6)应用模型。从前面的工作中可以得出一些简单的结论,比如通信支出越少的客户越容易流失、欠费频率越高的客户越容易流失等。除此之外,数据挖掘人员还应配合业务专家,根据数据挖掘分析寻找流失的原因,并找出潜在的规律,对未来的客户流失进行预测,指导业务行为。
流失分析中需要注意的问题
与其它行业客户流失分析相比,电信行业以其庞大的客户群而特征鲜明,因此在一些问题的处理上也应当多加注意。
(1)过度抽样。从实际情况上看,国内电信企业每月的客户流失率一般在1%~3%左右,如果直接采用某种模型(比如决策树、人工神经网络等)可能会因为数据概率太小而导致模型的失效,因此我们需要加大流失客户在总样本中的比例,但是这种过度抽样必须谨慎小心,要充分考虑它的负面效应。
(2)模型的有效性。在实际运用的过程中,数据挖掘除了上述提到的两类错误之外还可能存在客户被判断具备流失倾向,但当数据返回到客户服务前台的时候客户已经流失的情况,其原因可能存在于不同业务部门之间协调工作的时延过长或者数据采集间隔太长等,这使得流失判定预警丧失了原有的意义。
(3)模型的流失后分析。数据挖掘在客户流失管理中的重要应用不仅仅应包括对客户流失的提前预警,还应包括客户流失后的问题分析。按照不同的客户信息纬度,查找最容易流失的客户群,同业务部门人员配合,辅以相关调查,力求发现客户流失的症结所在。然而,这一部分往往由于过度专注于挖掘模型本身的拟合度而忽略了流失管理的实际价值所在。
随着电信行业竞争的日益加剧,客户保留和客户价值开发将成长为电信企业考虑的重点所在,而技术的不断进步将为深度的数据挖掘提供更多的支持,也必然会被越来越多地应用到运营商的客户关系管理之中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01