
电商分析:网站运营不得不做的用户分析
当电子商务网站成功地把一个访客转化成一个客户之后,如何提高这个客户对于网站的忠诚度,继而增加客户对于网站的整体贡献值就变得非常重要了,因为带来一个新客户的成本是维护好一个老客户的3 ~5 倍。只有有效地提高每个客户的消费,才能快速提升电子商务网站的整体收入。
最有价值客户的特征
在我们的客户库中,有些客户是我们必须要保留的,而有些客户的价值是相对有限的。这里虽然说得有些现实,不过我们必须意识到,为最有价值的客户提供最优质的服务、提高他们的忠诚度,是我们电子商务企业能够长足发展的基础。
1.建立CRM(客户关系管理):建立CRM的最主要原因是为了帮助我们了解客户,那么客户的信息越详细、越准确越好。建立了CRM之后,客户管理就会便捷而且系统化和流程化。
2.构建客户综合价值模型:我们可以通过客户综合价值模型来评估并选出我们最想要保留的客户。客户价值评估模型的搭建,综合衡量了客户五个方面的表现:客户当前贡献度、客户未来贡献度、客户信用度、客户忠诚度、客户成长潜力。
3.用客户生命周期模型提升收入:通过决策树算法我们能调整适合我们的客户生命周期,最后制定针对不同生命周期的营销策略。通过划分生命周期,我们能解决基本客户细分的问题。
如何把客户黏在我们的网站
通过数据分析,我们可以提高客户的黏性。也就是提升客户的平均停留时间,提升客户的活跃度,降低流失率。
提升客户平均停留时间:访客在我们的网站上停留的时间越长,越有可能发现网站上其可以购买的商品和感兴趣的内容,从而成为重复消费客户。 我们可以根据客户的浏览历史记录、购买记录做商品的选择分析,以及根据客户的喜好分析来找出推荐商品。
客户活跃度分析:平均访问次数、平均停留时间、平均访问深度是客户活跃的关键数据点,当我们能够成功提升访问次数、停留时间和访问深度这三个数据点之后,客户的活跃度自然就提升了。
做客户流失分析:对于通过数据挖掘提供的潜在流失客户名单,运营经理或者总监可以设定一个“挽留体系”,尽可能留住我们需要的客户。
客户需要什么商品
留住客户,我们需要更懂客户。个性化推荐系统的最大优点在于系统能够收集客户特征资料并根据客户特征,如兴趣偏好,为客户主动做出个性化的推荐。当我们还没有一个完善的定制化系统之前,我们可以从局部出发。比如,我们可以在运营中回答以下这些问题:
如何找出热门商品:我们找出热门商品的一个重要目标是为了让这件商品带动整个网站的销售,这可以从每天、每周和每月的销售记录中很容易找出来。
如何提高客单价:客单价是平均每一个顾客购买商品的金额,也就是平均交易金额。提高客单价能够有效提升电子商务网站的整体销售额。这里可用的是数据挖掘中的推荐算法。
如何找出潜在的热销商品:我们需要对商品进行分类,而这里商品的分类不是指商品类别上的分类,而是指对于商品在销售上产生价值的深度分类,可以采用数据挖掘中的决策树分类算法。
如何找出匹配的商品:商品推荐是和商品相关的,所以对于每一件商品,系统都会尽量选择它的关联商品。当客户选取了某一个商品后,在网页的下方会出现根据关联算法做出的商品推荐。这里用到的是数据挖掘中的关联算法。
不得不谈的KPI
KPI是关键绩效指数的英文首字母缩写,是用来衡量运营质量的专用数据。KPI的制定和执行可以说是电子商务企业管理最重要的步骤。KPI制定不合理,对整体的系统运营没有帮助,甚至过于强调一个不该属于关键指标的指标,会使得我们在运营中舍本求末。而如果忽略了一个关键指标,那么这样的KPI可能不会有太多的效果。
设定KPI的一个要素就是关键指标的数据点选择,KPI不可能关注所有的数据。一般来说,KPI的指标个数应当是三到五个,再多就会丧失“KPI”中的“K”(Key,关键的意思)的含义,成为“PI”了。
我们从运营指标开始,设立包括用户行为指标,用户价值指标和营销活动指标在内的一系列指标,把大的运营目标分解成阶段性和局部性可以实现的目标。从上到下把KPI指标分解成各个可以实现的子指标。
对用户行为指标而言,运营部门可以设定对于每一个子指标的具体数值。例如:到12月31日,平均访问深度要在1.6以上,平均停留时间要在27.1秒以上,跳出率要在70%以下,平均访问次数在1.2以上,而转化率需要在2.8%以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28