
一、推荐系统的概念
推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:
推荐系统在很多方面都有很好的应用,尤其在现在的个性化方面发挥着重要的作用。
二、推荐系统的分类
推荐系统使用了一系列不同的技术,主要可以分为以下两类:
基于内容(content-based)的推荐。主要依据的是推荐项的性质。
基于协同过滤(collaborative filtering)的推荐。主要依据的是用户或者项之间的相似性。
在协同过滤方法中,我们很显然的会发现,基于协同过滤的推荐系统用可以分为两类:
基于项(item-based)的推荐系统。主要依据的是项与项之间的相似性。
基于用户(user-based)的推荐系统。主要依据的是用户与用户之间的相似性。
三、相似度的度量方法
相似性的度量的方法有很多种,不同的度量方法的应用范围也不一样。相似性度量方法的设计也是机器学习算法设计中很重要的一部分,尤其是对于聚类算法,推荐系统这类算法。
相似性的度量方法必须满足拓扑学中的度量空间的基本条件:
假设d是度量空间上M的度量,其中度量d满足:
非负性:,当且
仅当时取等号;
对称性:;
三角不等性:。
这里主要介绍三种相似性的度量方法:欧式距离、皮尔逊相关系数和余弦相似度。
1、欧式距离
欧式距离是使用较多的相似性的度量方法,在kMeans中就使用到欧式距离作为相似项的发现。
2、皮尔逊相关系数(Pearson Correlation)
在欧氏距离的计算中,不同特征之间的量级对欧氏距离的影响比较大,例如,和
我们就不能很好的利用欧式距离判断和,和之间的相似性的大小。而皮尔逊相似性的度量对量级不敏感:
其中表示向量x和向量y内积,
表示向量x的二范数。
3、余弦相似度(Cosine Similarity)
余弦相似度有着与皮尔逊相似度同样的性质,对量级不敏感,是计算两个向量的夹角。在吴军老师的《数学之美》上,在计算文本相似性的过程中,大量使用了余弦相似性的度量方法。
四、基于相似度的推荐系统
协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的。我们通过一个评分系统对基于协同过滤的推荐系统作阐述。
(不同用户对不同商品的评分)
如图,横轴为每个用户对不同商品的评分,评分的范围为1~5,0表示该用户未对该商品评分。我们以用户Tracy为例,Tracy未对日式炸鸡排和寿司饭评分,我们利用协同过滤推荐系统预测Tracy对该两个商品评分,并依据分数的高低向Tracy推荐商品。
1、计算相似度
在本例中,我们是依据物品的相似度,即计算日式炸鸡排与鳗鱼饭、烤牛肉和手撕猪肉的相似度实现对日式炸鸡排的评分,用同样的方法对寿司饭评分。数据分析师培训
2、排序
排序的目的是实现在日式炸鸡排与寿司饭这两个商品中推荐给用户Tracy。
3、实验结果
(相似度的计算——基于余弦相似度)
(推荐结果)
从推荐结果,我们发现寿司饭的评分更高,首推寿司饭,日式炸鸡排排在寿司饭后面。
4、MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 主函数
% 导入数据
data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0;5,5,5,0,0];
% reccomendation
[sortScore, sortIndex] = recommend(data, 3, 'cosSim');
len = size(sortScore);
finalRec = [sortIndex, sortScore];
disp(finalRec);
计算相似度的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ score ] = evaluate( data, user, simMeas, item )
[m,n] = size(data);
simTotal = 0;
ratSimTotal = 0;
% 寻找用户都评价的商品
% data(user, item)为未评价的商品
for j = 1:n
userRating = data(user, j);%此用户评价的商品
ratedItem = zeros(m,1);
numOfNon = 0;%统计已评价商品的数目
if userRating == 0%只是找到已评分的商品
continue;
end
for i = 1:m
if data(i,item) ~= 0 && data(i,j) ~= 0
ratedItem(i,1) = 1;
numOfNon = numOfNon + 1;
end
end
% 判断有没有都评分的项
if numOfNon == 0
similarity = 0;
else
% 构造向量,便于计算相似性
vectorA = zeros(1,numOfNon);
vectorB = zeros(1,numOfNon);
r = 0;
for i = 1:m
if ratedItem(i,1) == 1
r = r+1;
vectorA(1,r) = data(i, j);
vectorB(1,r) = data(i, item);
end
end
switch simMeas
case {'cosSim'}
similarity = cosSim(vectorA,vectorB);
case {'ecludSim'}
similarity = ecludSim(vectorA,vectorB);
case {'pearsSim'}
similarity = pearsSim(vectorA,vectorB);
end
end
disp(['the ', num2str(item), ' and ', num2str(j), ' similarity is ', num2str(similarity)]);
simTotal = simTotal + similarity;
ratSimTotal = ratSimTotal + similarity * userRating;
end
if simTotal == 0
score = 0;
else
score = ratSimTotal./simTotal;
end
end
推荐函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ sortScore, sortIndex ] = recommend( data, user, simMeas )
% 获取data的大小
[m, n] = size(data);%m为用户,n为商品
if user > m
disp('The user is not in the dataBase');
end
% 寻找用户user未评分的商品
unratedItem = zeros(1,n);
numOfUnrated = 0;
for j = 1:n
if data(user, j) == 0
unratedItem(1,j) = 1;%0表示已经评分,1表示未评分
numOfUnrated = numOfUnrated + 1;
end
end
if numOfUnrated == 0
disp('the user has rated all items');
end
% 对未评分项打分,已达到推荐的作用
itemScore = zeros(numOfUnrated,2);
r = 0;
for j = 1:n
if unratedItem(1,j) == 1%找到未评分项
r = r + 1;
score = evaluate(data, user, simMeas, j);
itemScore(r,1) = j;
itemScore(r,2) = score;
end
end
%排序,按照分数的高低进行推荐
[sortScore, sortIndex_1] = sort(itemScore(:,2),'descend');
[numOfIndex,x] = size(sortIndex_1(:,1));
sortIndex = zeros(numOfIndex,1);
for m = 1:numOfIndex
sortIndex(m,:) = itemScore(sortIndex_1(m,:),1);
end
end
相似度的函数:
欧式距离函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ ecludSimilarity ] = ecludSim( vectorA, vectorB )
ecludSimilarity = 1./(1 + norm(vectorA - vectorB));
end
皮尔逊相关系数函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ pearsSimilarity ] = pearsSim( vectorA, vectorB )
pearsSimilarityMatrix = 0.5 + 0.5 * corrcoef(vectorA, vectorB);
pearsSimilarity = pearsSimilarityMatrix(1,2);
end
余弦相似度函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ cosSimilarity ] = cosSim( vectorA, vectorB )
%注意vectorA和vectorB都是行向量
num = vectorA * vectorB';
denom = norm(vectorA) * norm(vectorB);
cosSimilarity = 0.5 + 0.5 * (num./denom);
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09