
一、推荐系统的概念
推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:
推荐系统在很多方面都有很好的应用,尤其在现在的个性化方面发挥着重要的作用。
二、推荐系统的分类
推荐系统使用了一系列不同的技术,主要可以分为以下两类:
基于内容(content-based)的推荐。主要依据的是推荐项的性质。
基于协同过滤(collaborative filtering)的推荐。主要依据的是用户或者项之间的相似性。
在协同过滤方法中,我们很显然的会发现,基于协同过滤的推荐系统用可以分为两类:
基于项(item-based)的推荐系统。主要依据的是项与项之间的相似性。
基于用户(user-based)的推荐系统。主要依据的是用户与用户之间的相似性。
三、相似度的度量方法
相似性的度量的方法有很多种,不同的度量方法的应用范围也不一样。相似性度量方法的设计也是机器学习算法设计中很重要的一部分,尤其是对于聚类算法,推荐系统这类算法。
相似性的度量方法必须满足拓扑学中的度量空间的基本条件:
假设d是度量空间上M的度量,其中度量d满足:
非负性:,当且
仅当时取等号;
对称性:;
三角不等性:。
这里主要介绍三种相似性的度量方法:欧式距离、皮尔逊相关系数和余弦相似度。
1、欧式距离
欧式距离是使用较多的相似性的度量方法,在kMeans中就使用到欧式距离作为相似项的发现。
2、皮尔逊相关系数(Pearson Correlation)
在欧氏距离的计算中,不同特征之间的量级对欧氏距离的影响比较大,例如,和
我们就不能很好的利用欧式距离判断和,和之间的相似性的大小。而皮尔逊相似性的度量对量级不敏感:
其中表示向量x和向量y内积,
表示向量x的二范数。
3、余弦相似度(Cosine Similarity)
余弦相似度有着与皮尔逊相似度同样的性质,对量级不敏感,是计算两个向量的夹角。在吴军老师的《数学之美》上,在计算文本相似性的过程中,大量使用了余弦相似性的度量方法。
四、基于相似度的推荐系统
协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的。我们通过一个评分系统对基于协同过滤的推荐系统作阐述。
(不同用户对不同商品的评分)
如图,横轴为每个用户对不同商品的评分,评分的范围为1~5,0表示该用户未对该商品评分。我们以用户Tracy为例,Tracy未对日式炸鸡排和寿司饭评分,我们利用协同过滤推荐系统预测Tracy对该两个商品评分,并依据分数的高低向Tracy推荐商品。
1、计算相似度
在本例中,我们是依据物品的相似度,即计算日式炸鸡排与鳗鱼饭、烤牛肉和手撕猪肉的相似度实现对日式炸鸡排的评分,用同样的方法对寿司饭评分。数据分析师培训
2、排序
排序的目的是实现在日式炸鸡排与寿司饭这两个商品中推荐给用户Tracy。
3、实验结果
(相似度的计算——基于余弦相似度)
(推荐结果)
从推荐结果,我们发现寿司饭的评分更高,首推寿司饭,日式炸鸡排排在寿司饭后面。
4、MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 主函数
% 导入数据
data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0;5,5,5,0,0];
% reccomendation
[sortScore, sortIndex] = recommend(data, 3, 'cosSim');
len = size(sortScore);
finalRec = [sortIndex, sortScore];
disp(finalRec);
计算相似度的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ score ] = evaluate( data, user, simMeas, item )
[m,n] = size(data);
simTotal = 0;
ratSimTotal = 0;
% 寻找用户都评价的商品
% data(user, item)为未评价的商品
for j = 1:n
userRating = data(user, j);%此用户评价的商品
ratedItem = zeros(m,1);
numOfNon = 0;%统计已评价商品的数目
if userRating == 0%只是找到已评分的商品
continue;
end
for i = 1:m
if data(i,item) ~= 0 && data(i,j) ~= 0
ratedItem(i,1) = 1;
numOfNon = numOfNon + 1;
end
end
% 判断有没有都评分的项
if numOfNon == 0
similarity = 0;
else
% 构造向量,便于计算相似性
vectorA = zeros(1,numOfNon);
vectorB = zeros(1,numOfNon);
r = 0;
for i = 1:m
if ratedItem(i,1) == 1
r = r+1;
vectorA(1,r) = data(i, j);
vectorB(1,r) = data(i, item);
end
end
switch simMeas
case {'cosSim'}
similarity = cosSim(vectorA,vectorB);
case {'ecludSim'}
similarity = ecludSim(vectorA,vectorB);
case {'pearsSim'}
similarity = pearsSim(vectorA,vectorB);
end
end
disp(['the ', num2str(item), ' and ', num2str(j), ' similarity is ', num2str(similarity)]);
simTotal = simTotal + similarity;
ratSimTotal = ratSimTotal + similarity * userRating;
end
if simTotal == 0
score = 0;
else
score = ratSimTotal./simTotal;
end
end
推荐函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ sortScore, sortIndex ] = recommend( data, user, simMeas )
% 获取data的大小
[m, n] = size(data);%m为用户,n为商品
if user > m
disp('The user is not in the dataBase');
end
% 寻找用户user未评分的商品
unratedItem = zeros(1,n);
numOfUnrated = 0;
for j = 1:n
if data(user, j) == 0
unratedItem(1,j) = 1;%0表示已经评分,1表示未评分
numOfUnrated = numOfUnrated + 1;
end
end
if numOfUnrated == 0
disp('the user has rated all items');
end
% 对未评分项打分,已达到推荐的作用
itemScore = zeros(numOfUnrated,2);
r = 0;
for j = 1:n
if unratedItem(1,j) == 1%找到未评分项
r = r + 1;
score = evaluate(data, user, simMeas, j);
itemScore(r,1) = j;
itemScore(r,2) = score;
end
end
%排序,按照分数的高低进行推荐
[sortScore, sortIndex_1] = sort(itemScore(:,2),'descend');
[numOfIndex,x] = size(sortIndex_1(:,1));
sortIndex = zeros(numOfIndex,1);
for m = 1:numOfIndex
sortIndex(m,:) = itemScore(sortIndex_1(m,:),1);
end
end
相似度的函数:
欧式距离函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ ecludSimilarity ] = ecludSim( vectorA, vectorB )
ecludSimilarity = 1./(1 + norm(vectorA - vectorB));
end
皮尔逊相关系数函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ pearsSimilarity ] = pearsSim( vectorA, vectorB )
pearsSimilarityMatrix = 0.5 + 0.5 * corrcoef(vectorA, vectorB);
pearsSimilarity = pearsSimilarityMatrix(1,2);
end
余弦相似度函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ cosSimilarity ] = cosSim( vectorA, vectorB )
%注意vectorA和vectorB都是行向量
num = vectorA * vectorB';
denom = norm(vectorA) * norm(vectorB);
cosSimilarity = 0.5 + 0.5 * (num./denom);
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16