
三个常用数据分析模型的典型应用场景
为啥是这三个模型呢?因为这三个模型分别代表了数据分析的三种思路:分类,聚类,降维。
为啥没有回归?回归我打算专门写一篇,因此在本文中暂不涉及。
为啥只说应用场景?因为具体模型有很多专业书籍讲的更好,而且我个人认为,模型是固定的,场景是多变的,知道什么时候该用什么模型,比会用这个模型更重要一些。
那么,接下来正文开始。
一、决策树
定义:机器学习中,决策树是一个预测模型;它代表的是对象属性与对象值之间的一种映射关系。
个人认为决策树最出名的应用应该是这个:
你们头脑里隐藏的任何念头,
都躲不过魔帽的金睛火眼,
戴上它试一下吧,我会告诉你们,
你们应该分到哪一所学院。
你也许属于格兰芬多,
那里有埋藏在心底的勇敢,
他们的胆识、气魄和豪爽,
使格兰芬多出类拔萃;
你也许属于赫奇帕奇,
那里的人正直 忠诚,
赫奇帕奇的学子们坚忍诚实,
不畏惧艰辛的劳动;
如果你头脑精明,
或许会进智慧的老拉文克劳,
那些睿智博学的人,
总会在那里遇见他们的同道;
也许你会进斯莱特林,
也许你在这里交上真诚的朋友,
但那些狡诈 阴险之辈却会不惜一切手段,
去达到他们的目的。
分院帽应用的是个非常典型的决策树模型(什么鬼),在上文的《分院帽之歌(节选)》中,我标粗的每个部分都可以认为是一个特征,帽子往学生头上一扣,读取学生的显著特征,然后分到某个类别里。所以你看,哈利波特一开始表现出来的特征都是格兰芬多的特征,但他毕竟是个魂器,分院帽读取数据时候发现这个人有两类显著特征,于是犹豫不决,最后还是波特自己提出了要求,这就证明应用模型时的人工干预必不可少(大雾)。
言归正传,决策树在实际工作中基本应用于给人群分类,最好的应用场景是要把人群分为互斥的两类,并找到两类人群的不同特征。当然,分为多个互斥类别也OK。
一个非常典型的场景是流失模型,对电信业来说,通过用户的行为来提前找到哪些人有流失风险,并通过专门优惠等手段挽留,是运营中的重要部分。之前我在转入互联网行业时,第一选择本来是游戏公司(可惜愿意收的给不起合理工资……),因此研究了一下游戏用户流失模型的内容,发现跟电信业有相通之处。举个例子,对于某款端游,定义超过一周不登录用户为流失,那么做过的任务、拿到的装备、打过的副本、充值金额等等,都可以作为预测用特征,比对流失与非流失用户,找到两者的区别,在关键流失节点上加一些运营策略来减少流失。
二、k-means聚类
定义:k-means聚类的目的是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。
K-means聚类的好处在于样本量大的时候,可以快速分群,但需要在分群后注意每个群体的可解释性。换句话说,给你一万个人,分成四群,需要能够解释每一群人的突出特征,如果有两群人的特征很相似,那就要重新分群了;或者有一群人的特征不明显,那就要增加分群了。
聚类与分类不同,分类的目的是得到可复用的规则,使得训练集以外的个体可以直接分到已知的类别里;聚类属于后验的研究,是对已有个体的辨别。当然聚类可以在一定条件下转化为分类,例如K-means里知道了每类的中心,那么新个体可以依据和每类中心的距离,来判断所属类别。但通常情况下,聚类方法本身仍是用于研究的次数更多。
K-means常用的场景是在不清楚用户有几类时,尝试性的将用户进行分类,并根据每类用户的不同特征,决定下步动作。一个典型的应用场景是CRM管理中的数据库营销。举例,对于一个超市/电商网站/综合零售商,可以根据用户的购买行为,将其分为“年轻白领”、“一家三口”、“家有一老”、”初得子女“等等类型,然后通过邮件、短信、推送通知等,向其发起不同的优惠活动。
明尼苏达州一家塔吉特门店被客户投诉,一位中年男子指控塔吉特将婴儿产品优惠券寄给他的女儿——一个高中生。但没多久他却来电道歉,因为女儿经他逼问后坦承自己真的怀孕了。塔吉特百货就是靠着分析用户所有的购物数据,然后通过相关关系分析得出事情的真实状况。
这个案例也算是与”啤酒和尿布“知名度差不多的一个案例。在这个案例中,那个高中生少女明显是被聚到了孕妇那一类,因为她的行为模式与孕妇是很相近的。
(决策树也可以做这件事,但需要先定义出特征,因此在探索特征未知的领域时,聚类可能更好用一些)
顺便说一句,我原先在国企的时候干的就是这个事,而且发送渠道是最土的那种……平信……术语叫数据库商函……也叫直复营销(不是直销也不是传销!)。
三、因子分析
定义:因子分析是指研究从变量群中提取共性因子的统计技术。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
之前说到因子分析是降维的一种方式,而降维归根结底就是一句话:变量太多的时候,需要将变量重构成带有更多信息的新变量,新变量与原始变量之间存在相关性,这样才能在不损失太多原始信息的情况下减少变量数量。
因子分析的一个典型应用场景是满意度调查。通过市场调研方式获取消费者满意度时,通常会有两位数的问题来了解消费者对哪些方面满意,哪些方面不满意,这个时候因子分析就很重要,可以将消费者的问题归结为相对较少的几个大问题方向,同时也可以看出哪些问题更为重要,需要优先解决。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15