京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据分析不只是统计方法,更重要的是贴近业务的需求分析、实施过程、与效果评估。真正了解一个行业,就要接触到这个行业的遗产,目前商业数据分析遗产基本上都是以SAS的形式出现的。如果说SAS的遗产是100的话,其他软件的遗产加在一起不超过50。”_摘自CDA SAS金牌讲师常老师语录。
SAS的优点不胜枚举,某知乎网友的总结供大家参考:
1. 权威认证:SAS认证被美国企业界评为“最有价值认证”,SAS被评为雇主最认可的企业级统计软件。被誉为全美福利最好的企业,Google在制定公司园区的福利安排时,就曾以SAS为模板;
2. 功能强大:SAS系统是一个组合的软件系统,并具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能,SAS EG(可视化统计分析)、SAS EM(数据挖掘)、SAS QC(质量控制)、SAS GRAPH(绘图系统)等;
3. 运行快速:SAS基于硬盘运行的数据处理和分析机制,使得SAS可以在本机进行大数据分析和处理;
4. 适用性强:SAS几乎可以运用在一切数据分析的行业、领域及场景,信贷风险建模、反欺诈模型、客户关系管理、电信离网用户预警、网站行为关联分析商品关联规则等。
培训信息
|
地点 |
课程 |
时间 |
讲师 |
费用 |
报名 |
|
北京 |
SAS数据挖掘 |
6月25-26日 7月02-03日 7月09-10日 |
翟祥 |
5900元/人 |
|
|
上海 |
SAS数据挖掘 |
6月4-5日 6月11-12日 6月18-19日 |
徐刚 |
5900元/人 |
|
|
远程 |
SAS数据挖掘 |
6月25-7月10日 6月4-19日
|
翟祥、徐刚 |
4400元/人 |
课程大纲
|
第一部分:编程基础 1、编程基础介绍 1.1 SAS 入门与基本语法 2 、访问与展示数据 2.1 认识 SAS数据和逻辑库 2.2 深入理解 SAS 数据类型 3、数据管理和操纵 3.1 创建变量 3.2 数据循环处理 3.3 合并 SAS数据集 3.4 重组数据集 4、 数据描述和图表制作
第二部分:SAS数据分析基础与高级编程 1、SQL过程简介 2、SAS宏语言 2.1 宏编译器的运行机制、宏变量 2.2 通过Data和sql步创建宏变量 2.3 定义宏和定义宏参数 2.4 宏中的分支流程语句 2.5 宏中的循环流程语句
1. 数据挖掘简介、方法论、技术介绍 2. SASEM界面与节点介绍 4. 决策树、组合算法、以及辅助应用 5. 神经网络 7. SVM、贝叶斯网络和其他模型介绍 8.模型评估 9.优化(两阶段模型)
13、聚类分析 13.1聚类分析流程 13.2 快速聚类 13.3谱聚类、密度聚类和其他聚类 14、关联规则 14.1 关联规则 14.2 序贯模型
|
讲师介绍:
翟祥:人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐筱刚:男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
主要案例:
1.构建数据集操作示例演示和描述性分析(流失预测模型);
2.数据清洗案例;
3.老兵捐款案例;
4.销售提升数据进行操作演示和练习;
5.客户流失模型演示和练习;
6.保险客户流失;
7.SAS编程构造信用评分模型(进件评分卡);
8.银行产品关联分析。
报名流程:
1.在线填写报名信息:
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
优惠多多:
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
4. 老学员9折优惠;
学员对象:
1.各行业数据分析、数据挖掘从业者
2.金融、电信、零售、医学等各行业业务数据分析人员
3.政府事业单位大数据及数据挖掘项目人员
4.数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5.对数据挖掘感兴趣的各界人员
关于证书:
CDA考试安排:
1. 考试时间2016年6月26日
2. 考试内容:CDA LEVLE Ⅱ建模分析师大纲。
3. 报名费用:1500元/人。参加CDA系统培训学员费用为1000/人。
4. 其他:CDA考试一次不过可申请补考,补考费用为原价一半。证书3年审核一次。
5. 报考链接: http://exam.cda.cn/

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25