京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据精准营销中的个性化推荐与应用
亚马逊通过个性化推荐所获取的交易额占总交易额的20%;双十一期间,天猫和淘宝通过对数据的挖掘,使用了“千人千面”的个性化推荐;阿里CEO张勇在之后的媒体沟通会上肯定赞扬了个性化推荐所取得的成绩…….。
这一切表明,个性化推荐所突显的作用越来越受到企业的重视。
何为个性化推荐?概括来说“人-场景-商品”这三个维度是人性化推荐的基础。推荐的过程就是通过寻找这三个维度之间的相关性,提供“人-场景-商品”的最佳组合。
个性化推荐可分为两类:基于内容的推荐、协同过滤推荐,下面我们来分别了解一下。
一、基于内容的推荐(Content-based Recommendations)
第一步是统计相应的内容材料,确定样本集的正例和负例。举个栗子:如果要将iphone6s 推荐给相应的客户,那么样本集正例就是那些购买过iphone6s的人,样本集负例就是那些没购买过iphone6s的人。
第二步就是引用学习算法,基于内容的推荐的学习算法主要有:Rocchio算法、决策树算法、线性分类算法、朴素贝叶斯算法、GBDT。这些学习算法都可以在网上找到相应的代码,可以根据相应的数据特点和所要应用的商业场景选择相应的学习算法。
第三步是确定模型的特征变量,这需要先为每一个item(场景下的商品)提取出相应的特征数据,并且统计样本中的人对于每一个item的特征偏好(喜欢和不喜欢),这样学习算法可以算出特征变量对于模型的卡方和增益,卡方越大,说明该特征变量对于模型样本的区分度越高,增益越大,说明该特征变量给模型带来的信息熵越高。举个栗子:对于”iphone6s目标客户“模型,有地域、收入、年龄、学历、历史购买均单价等特征变量,其中卡方的大小:收入>历史购买均单价>学历>年龄>地域,那么对于“iphone6s目标客户“模型来说,特征变量的重要性大小:收入>历史购买均单价>学历>年龄>地域。需要说明的是;选择特征变量时,要结合样本集的数据量,因为当样本集数据量过大,而特征变量太少,就会导致内容推荐模型欠拟合,当样本集数据量太少,而特征变量又多,则会导致内容推荐模型过拟合。过拟合和欠拟合都会影响推荐模型的准确性。
第四步是训练模型,可以通过调参数的方式优化模型的正确率,正确率越高,表示模型的质量越高。
简要的说:基于内容的推荐是就是通过机器学习产生相应的规则模型,然后用模型预测用户在特定场景下对商品的偏好度。
基于这样的思维方式,我们可以在各个场景下针对不同的商品构建出不同的模型,有了这些模型集,当新的用户进来,跑下各个模型,就可以判断该用户是哪个商品的目标客户,从而判断给她推荐什么商品。
二、协同过滤(Collaborative Filtering Recommendation)
第一种是基于用户的协同过滤,这种一般基于用户有足够的社会属性数据。举个栗子:用户凯文对iphone6s没有相应信息记录,那么可以(采用皮尔森系数)找到和凯文社会属性相似的晓华, 统计晓华对iPhone6s 的偏好度( 对比晓华对于所有商品的偏好度)。最后预测出凯文对于iphone6s的偏好度。
第二种是基于物品的协同过滤,这种多应用于电商业务中,再举个栗子:用户凯文对于iphone6s没有相应的信息记录,那么可以(采用余弦算法)找到和iPhone6s具有相同的产品特征的商品x, 统计凯文于商品x的偏好度(对比凯文对于所有商品的偏好度),最后预测出凯文对于iphone6s的偏好度。
协同过滤的算法主要有:皮尔森算法,杰西卡算法,余弦距离相似算法,欧式距离算法等。在此不做赘述,本文重点对个性化推荐相关分类内容进行阐述,以此抛砖引玉,期待与大家进一步深入探讨。
三、案例
网舟科技为客户提供的个性化荐服务,通过对用户线上线下数据的聚类、关联和协同过滤,建立了不同使用场景的推荐机制,实现推荐引擎从传统的大众化推荐向差异化推荐转变,协助企业实现智能商品导购,提升了用户购买过程的体验,增加了商品的销量。通过分析大量用户行为日志,精准把握消费偏好,针对用户整个浏览过程中的各个页面,给用户提供个性化页面展示。在用户购买最佳的时间,为用户推荐最适合的商品,从而提高网站的点击率和转化率。达到拉动销售额增长,增加交叉/向上销售,提升客户满意度的效果(如图所示)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20