
大数据精准营销中的个性化推荐与应用
亚马逊通过个性化推荐所获取的交易额占总交易额的20%;双十一期间,天猫和淘宝通过对数据的挖掘,使用了“千人千面”的个性化推荐;阿里CEO张勇在之后的媒体沟通会上肯定赞扬了个性化推荐所取得的成绩…….。
这一切表明,个性化推荐所突显的作用越来越受到企业的重视。
何为个性化推荐?概括来说“人-场景-商品”这三个维度是人性化推荐的基础。推荐的过程就是通过寻找这三个维度之间的相关性,提供“人-场景-商品”的最佳组合。
个性化推荐可分为两类:基于内容的推荐、协同过滤推荐,下面我们来分别了解一下。
一、基于内容的推荐(Content-based Recommendations)
第一步是统计相应的内容材料,确定样本集的正例和负例。举个栗子:如果要将iphone6s 推荐给相应的客户,那么样本集正例就是那些购买过iphone6s的人,样本集负例就是那些没购买过iphone6s的人。
第二步就是引用学习算法,基于内容的推荐的学习算法主要有:Rocchio算法、决策树算法、线性分类算法、朴素贝叶斯算法、GBDT。这些学习算法都可以在网上找到相应的代码,可以根据相应的数据特点和所要应用的商业场景选择相应的学习算法。
第三步是确定模型的特征变量,这需要先为每一个item(场景下的商品)提取出相应的特征数据,并且统计样本中的人对于每一个item的特征偏好(喜欢和不喜欢),这样学习算法可以算出特征变量对于模型的卡方和增益,卡方越大,说明该特征变量对于模型样本的区分度越高,增益越大,说明该特征变量给模型带来的信息熵越高。举个栗子:对于”iphone6s目标客户“模型,有地域、收入、年龄、学历、历史购买均单价等特征变量,其中卡方的大小:收入>历史购买均单价>学历>年龄>地域,那么对于“iphone6s目标客户“模型来说,特征变量的重要性大小:收入>历史购买均单价>学历>年龄>地域。需要说明的是;选择特征变量时,要结合样本集的数据量,因为当样本集数据量过大,而特征变量太少,就会导致内容推荐模型欠拟合,当样本集数据量太少,而特征变量又多,则会导致内容推荐模型过拟合。过拟合和欠拟合都会影响推荐模型的准确性。
第四步是训练模型,可以通过调参数的方式优化模型的正确率,正确率越高,表示模型的质量越高。
简要的说:基于内容的推荐是就是通过机器学习产生相应的规则模型,然后用模型预测用户在特定场景下对商品的偏好度。
基于这样的思维方式,我们可以在各个场景下针对不同的商品构建出不同的模型,有了这些模型集,当新的用户进来,跑下各个模型,就可以判断该用户是哪个商品的目标客户,从而判断给她推荐什么商品。
二、协同过滤(Collaborative Filtering Recommendation)
第一种是基于用户的协同过滤,这种一般基于用户有足够的社会属性数据。举个栗子:用户凯文对iphone6s没有相应信息记录,那么可以(采用皮尔森系数)找到和凯文社会属性相似的晓华, 统计晓华对iPhone6s 的偏好度( 对比晓华对于所有商品的偏好度)。最后预测出凯文对于iphone6s的偏好度。
第二种是基于物品的协同过滤,这种多应用于电商业务中,再举个栗子:用户凯文对于iphone6s没有相应的信息记录,那么可以(采用余弦算法)找到和iPhone6s具有相同的产品特征的商品x, 统计凯文于商品x的偏好度(对比凯文对于所有商品的偏好度),最后预测出凯文对于iphone6s的偏好度。
协同过滤的算法主要有:皮尔森算法,杰西卡算法,余弦距离相似算法,欧式距离算法等。在此不做赘述,本文重点对个性化推荐相关分类内容进行阐述,以此抛砖引玉,期待与大家进一步深入探讨。
三、案例
网舟科技为客户提供的个性化荐服务,通过对用户线上线下数据的聚类、关联和协同过滤,建立了不同使用场景的推荐机制,实现推荐引擎从传统的大众化推荐向差异化推荐转变,协助企业实现智能商品导购,提升了用户购买过程的体验,增加了商品的销量。通过分析大量用户行为日志,精准把握消费偏好,针对用户整个浏览过程中的各个页面,给用户提供个性化页面展示。在用户购买最佳的时间,为用户推荐最适合的商品,从而提高网站的点击率和转化率。达到拉动销售额增长,增加交叉/向上销售,提升客户满意度的效果(如图所示)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18