
大数据助运营商实现转型 五大问题亟待改进
今天,传统电信运营商,无论是发达国家的还是新兴市场的都面临市场饱和、增长乏力的局面,需找到新的增长源。一些传统的电信运营商已使用大数据改善现有的市场表现力、建立新的收入流,例如:美国的Verizon使用匿名的用户数据,通过补贴方式,向第三方销售广告。它的竞争对手AT&T则建立了大数据动力塔断电工具,更好地实现基站的优化修理,让用户获得更好的体验。对于尚未使用大数据的传统电信运营商,需要确定其大数据发展的规划、IT解决方案,建立相关的支持组织,实现大数据的发展。
第一,使用大数据接入和分析丰富和个性化的数据通过大数据的使用,运营商可实时接入丰富的和个性化的用户数据,从这些数据中获得更多的价值,这是传统运营商独有的优势之一。实现成本优化和开拓新的收入源。运营商可利用这一优势地位,建立用户观察中心,提供各种基于大数据的产品和服务,从中获得不同程度的经验和增值。
第二,使用大数据实现结构性和非结构性数据的结合使用。对于传统的电信运营商,大数据商机无限,因为他们已掌握了大量的结构性数据,包括网络使用、地点、交易账单和个人信息。无结构的数据包括:呼叫中心的文件、社交媒体交换信息等。对于传统的运营商,要改善效率和经营效果,需要在一定时间内、系列的结构性数据与非结构性数据使用上找到平衡点。通过价格优化,实现收入增长、改善目标和扩展用户生命期、降低经营成本、实现支出的智能化。使用大数据,可实现对现有收入流的优化。
第三,以智能方法替代传统的分析方法在大数据时代,需要使用智能方法对数据进行分析,包括数据的抽取、转换、装载,以代替传统的数据分析方法。电信运营商无需新的数据源,只需建立大容量存储容量或确保快速的数据处理速度。例如:欧洲的传统运营商运用智能分析法改善发展中市场消费者的智能手机普及率。通过统计分析不同通话周期的通话模式,确定对手机普及率的影响者,确定目标影响者,为其提供相应的服务。
当然,为了促进大数据的发展,传统电信运营商需建立一个相应的团队来实施大数据计划,确定数据的收集、组织、管理和使用。可以采取与其它单位合作的方式,也可采用合资的方式建立相应的团队。目前,全球一些运营商已成功与其它部门共同建立了大数据团队,实现团队与商业市场间的紧密连接,以分析和解决相关的商业问题。
一是,分析人才的缺乏。在竞争激烈的情况下,分析人才缺乏成为吸引资源的主要风险。根据Gartner的研究,2015年,三个与大数据相关的工作中就有一个空缺,主要是因为相关技能不足。
二是,数据的质量或可用性。对于企业,经常面临的问题是没有建立适当的数据治理体制。数据质量或可用性是导致数据不准确的关键,会导致分析和结论出现问题,这一问题对新兴市场的挑战更大。对于许多运营商来说,准确的数据来源和组织是至关重要的。
三是,无效的大数据团队。许多传统的电信运营商将大数据放在IT或商业智能化部门,由于远离商业部门,在制定和选择解决方案时,往往很少考虑商业的需要,这将大大影响数据团队的运作效果。
四是,很难获得安全方面所需的资金。许多传统的电信运营商为了提高边际收益,往往会压缩资本支出,为此也不愿意加大投入,更别提加大安全方面的投入了。但这一投资对于企业的发展又是至关重要的。
五是,法律和管制面临的挑战。对于传统的运营商,应意识到并遵循用户数据的相关限制。要让用户相信,他们的数据被使用让他们获得了最佳利益。
首先,减少用户流失率。印尼的电信运营商Telkomsel采用大数据进行分析,减少用户流失率、降低用户收入的成本、扩大用户在网时间。T-Mobile使用数据分析平台,减少用户流失率。
其次,提供定制化服务。运营商Airtel与Mobileum联手,对非洲用户数据进行分析,更好的了解和测算用户国际旅行的需求。可帮助Airtel为漫游用户提供定制化服务。Vodafone与TomTom在个人导航装置方面合作,为TomTom在全球34个国家提供装置所需SIM,SIM可实现M2M通信。德国电信与Kiunsys公司合作,为意大利Pisa提供智慧城市解决方案,主要是利用大数据优化服务。
再次,大数据品牌解决方案法国电信Orange创立了一个大数据产品Flux Vision,作为其商业服务的一部分。法国旅游机构可使用这一工具了解用户行为等。德国电信通过其分支机构提供一些大数据解决方案,包括实时安全分析、移动性连接、面向私人和公共组织的云解决方案。
然后,为第三方提供大数据解决方案。前新西兰电信公司为外部机构提供大数据解决方案,主要是为私人企业和公共机构提供数据观察、服务及云解决方案。新加坡电信成立了DataSpark公司,为第三方提供大数据解决方案,提供的服务包括:GeoAnalytics,确定不同目标群运动幅度、模式和步幅。
最后,扩大新的业务收入流。Telefónica提供了一种智能步伐产品,用于分析人群的行为,帮助企业和公共机构改善对消费者的了解,更好地做出决策。Telefónica利用大数据扩展新的收入源。它联合一家银行推出了Yaap购物业务,以提供数字化服务简化人们的日常生活为目标。希望成为面向西班牙人的最大网络,同时,积累消费者购物行为的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18