京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智慧数据避免企业成为大数据落伍者
不可回避,我们生活在一个大数据的时代。不仅美国等超级大国将大数据定位为国家战略,将大数据成为“未来新石油”,商业企业亦能从大数据中寻找金矿,成为制胜未来的法宝。
在数据分析时代,数据已经给企业创造了价值。如很多年前,银行就可以通过数据分析,实现针对信用卡用户的精准营销,同样,在政府公共事业管理当中,数据能够帮助政府实现公共资源配置的优化,服务广大市民。
随着互联网和互联网的推动,我们从传统的数据时代跃入了大数据时代的。大数据具有4V特点——数据体量巨大(Volume)、数据类型繁多(Variety)、价值密度低(Value)、处理速度快(Velocity) ,大数据的积累和沉淀,以及大数据分析技术的演进将进一步给企业创造商业价值,也为个人生活带去便利。但是如何收集、分析、使用和挖掘大数据价值也是商业企业面临的难题。
“分析工具和具有分析技能的人,将成为推动世界经济向前发展的主要动力。” Ptak,Neol and Associates公司的分析师Mike Karp说,关于大数据的最重要的特点是“大”、“多样化”,传统的数据处理工具或存储管理技术不能充分处理它。因此,在竞争激烈的行业划分中,是否能结合业务发展将这些数据转为可利用的知识和智慧,已成为行业领导者和落伍者之间的关键区分。
随着近年来行业信息化的深入发展和互联网的多维应用,政府、企业、机构等积累了海量的“大”数据,这些海量数据广泛分布于产品开发、市场营销、客服服务、供应链等各个环节,并以文件、音频、视频等多种形态结构化和非结构化存在。不少机构持续加大在大数据上的投资,引入商业智能、数据仓库、数据治理、Hadoop、模式识别、人工智能、数据挖掘等大数据技术和方法,以满足创新性分析的需求。
籍此,文思海辉提出了“Smart Data”智慧数据发展战略,所谓“Smart Data”,即是基于大数据基础上的商业智能和大数据分析理念、工具和方法论。从而帮助企业挖掘和提升数据应用价值,引领客户“全面地发掘大数据价值”。
在文思海辉商业智能事业部副总裁、大数据专家贾丕星看来,大数据已经成为很多商业企业的核心战略,大数据应用涉及整个企业的核心决策流程,为企业适应市场、改变商业模式而加速。在文思海辉的战略规划中,将以大数据为基础,通过自身咨询、解决方案和外包开发服务,帮助企业和政府打造智慧商务、智慧金融、智慧城市和智慧制造等有价值的应用体系。
他分析,从整个数据价值链来看,数据收集和存储之后,进行处理变成有价值的信息,之后要从信息变成知识,即针对商业企业所要解决的问题出发,通过数据分析和预测,发现原因,寻找解决方法,这是新一代大数据分析的关键部分。而更为重要的是,在分析之后,要把它嵌入到企业的业务流程当中,能够对这些问题采取行动,使得整个数据的应用和价值链形成闭环回路。如果没有高性能的分析工具以及适合大数据的分析方法,大数据的价值将无法得到释放,大数据的堆积后的海量数据将逐步变成无用的垃圾,同时占用大量的存储。
美国IT咨询公司Avanade商业情报部副总裁斯蒂夫·帕尔默说,大数据是指非常“膨胀”的数据集,大数据给人类带来的真正机遇是把许多信息碎片拼起来,为我们的决策服务。
贾丕星指出,在全球深度联合和融合的大数据时代,大数据已经成为商业竞争的重要基本要素,不仅体现在支撑业务运营和决策上,也将成为企业和机构提升竞争力和创新能力的强力引擎。各行业都需要从无处不在的数据中挖掘价值,这是每个大型企业管理者都需要深入思考的问题。中国大数据市场将进入高速发展时期,大量具有远见的企业正在启动大数据战略和项目,而这也带来对Smart Data需求的飙升。在大数据时代,中国拥有庞大的信息资源和用户市场需求,企业将拥有更多通过大数据支持的创新服务脱颖而出的机会,如果不能从大数据和智慧数据的世界中获益,就可能会输掉未来的竞争。
总之,利用智慧数据对商业数据的深刻动车,才能让你把握未来,成为大数据时代的领导者,而避免成为落伍者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15