
最小二乘法,相信大家都不陌生,统计学中很是常见,而且其理论相对简单,用途也很广泛。今天小编就给大家具体介绍一下最小二乘法。
一、最小二乘概念
最小二乘,或者也可以叫做最小平方和,它目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。也就意味着,最小二乘法可以用于对函数的拟合。
最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线的欧氏距离之和最小。更直观的解释:
假设有一条直线y=ax+b,要在这条直线上找到一点,距离(x0.y0)这个点的距离最短。如果用绝对值的方法寻找,也就是取min(|y−y0|+|x−x0|),由于绝对值最小为0.所以最小的情况就是x=x0或者y=y0处。
如果用平方和的方法寻找,就是取min(y−y0)2+(x−x0)2.可以看出该式是两点间距离公式,也就是距离的概念。那么最短的距离,就是点到直线的垂线。
二、最小二乘核心思想
最小二乘的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
三、直线拟合/多元线性回归
求导计算最小值是通用解法,但矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。
故损失函数定义为:(系数1/2是为了简化计算添加的,求迹前和求迹后值不变)
应用矩阵迹的计算公式:
四、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,可以使用最小二乘法。
但是同时最小二乘也具有局限性:
1.最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
2.如果是样本特征n非常的大的情况,计算逆矩阵是一个极为耗时的工作,甚至是不可行,通常不超过10000个特征。
3.若拟合函数不是线性的,则无法使用最小二乘法,这时就需要通过一些技巧转化为线性才能使用。
五、最小二乘实现
/* 最小二乘法的实现 C++版 命令行输入数据文件 最后输入x得到预测的y值 */ #include<iostream> #include<fstream> #include<vector> using namespace std; class LeastSquare { double b0, b1; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1 = 0, t2 = 0, t3 = 0, t4 = 0; for (int i = 0; i<x.size(); ++i) { t1 += x[i] * x[i]; t2 += x[i]; t3 += x[i] * y[i]; t4 += y[i]; } b0 = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得 B0 b1 = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得 B1 } double getY(const double x) const { return b0+b1*x; } void print() const { if (b1>=0) cout << "y = " << b0 << "+" << b1 << 'x' << "\n"; else cout << "y = " << b0 << "" << b1 << 'x' << "\n"; } }; int main(int argc, char *argv[]) { if (argc != 2) { cout << " data.txt don't exit " << endl; return -1; } else { vector<double> x; vector<double> y; int count = 1; ifstream in(argv[1]); for (double d; in >> d; count++) if (count % 2 == 1) x.push_back(d); else y.push_back(d); LeastSquare ls(x, y); ls.print(); cout << "Input x:\n"; double x0; while (cin >> x0) { cout << "y = " << ls.getY(x0) << endl; cout << "Input x:\n"; } } int endline; cin >> endline; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08