
在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst)数据分析师认证作为一套科学化、专业化、国际化的人才考核标准,受到了广泛关注。想要报考 CDA 数据分析师,首先要了解其报考条件。CDA 数据分析师认证考试分为 Level I、Level II 和 Level III 三个级别,每个级别对报考者的要求各有不同。
CDA Level I 是入门级认证,主要面向零基础就业转行者、应届毕业生,以及产品、运营、营销等业务岗与研发、技术岗在职者,还有企业创始人、经理人、管理咨询类岗位从业者等。这一级别的报考条件极为宽松,没有任何硬性要求,无论你是刚刚毕业的大学生,对数据分析充满好奇,想要开启新的职业篇章,还是已经在职场摸爬滚打,期望通过掌握数据分析技能实现职业转型的数据爱好者,都能轻松报考 CDA Level I。它就像是一扇敞开的大门,为所有渴望踏入数据分析领域的人提供了一个绝佳的起点 。
CDA Level II 认证针对的是在数据分析领域有进一步发展需求,希望掌握更深入知识和技能的人群。报考 CDA Level II 需要满足以下条件之一:
已获得 CDA Level I 认证:这要求报考者已经通过了 CDA Level I 的考试,获得了相应的认证证书,且通常需要获得 CDA Level I 认证半年以上 。这意味着报考者已经具备了一定的数据分析基础,能够在此基础上进行更深入的学习和提升。通过 CDA Level II 认证,将充分展示报考者在数据分析领域达到了中级能力水平,有能力承担更复杂的数据处理和分析任务,例如能够运用多元统计、时间序列、数据挖掘等理论知识,结合专业分析软件,从海量数据中提取关键信息,并进行建模分析,最终形成逻辑严密的数据分析报告 。
拥有一年以上数据分析岗位工作经验:对于那些没有 CDA Level I 认证,但在数据分析岗位上积累了足够实践经验的人来说,也有机会报考 CDA Level II。丰富的实际工作经验使得他们对数据分析流程、业务场景有着深刻的理解,能够将实践中的问题与理论知识相结合,通过 CDA Level II 认证进一步提升自己的专业素养和技能水平 。
CDA Level III 是高级认证,专为追求在数据分析领域达到专家水平的专业人士设计。这一级别的报考条件较为严格,在新版考试大纲中明确规定,需要逐级通过前一级别的认证才能报考。也就是说,报考者必须先成功通过 CDA Level I 和 Level II 认证,才有资格报考 CDA Level III 。这是因为 CDA Level III 要求报考者不仅要掌握 CDA Level II 的所有理论及技术,还需要深入了解计算机技术、软件开发技术、大数据分析架构及企业战略分析方法等知识体系,能够带领团队完成复杂的数据整合与管理工作,为企业发展提供全方位的数据支持。例如,在面对企业整体数据资产的规划和管理时,能够从战略高度制定有效的方案,通过敏锐的洞察力和判断力,将数据转化为推动企业前进的有力武器 。
报名材料准备:在报名时,报考者需要根据不同级别准备相应的材料。一般来说,报名信息填写需真实有效,包括个人基本信息、学历信息等。报考 CDA Level II 和 Level III 时,如果涉及到前一级别认证证书的要求,需要准备好证书的照片或扫描件,以便在报名过程中上传审核 。
CDA Level I 和 Level II 考试随报随考,考生在报名成功后,可在一年内自行选择时间,预约就近的考试中心进行考试。目前,CDA Level I + II 在中国内地 30 + 省市,70 + 城市设有 250 + 考场,为考生提供了极大的便利。而 CDA Level III 考试一年举办四届,分别在 3、6、9、12 月的最后一个周六,每届考前一个月截止该届报名。考试地点设置在中国内地 30 所城市,如北京、上海、天津、重庆、成都、深圳、广州等 。
CDA Level I 考试时间为 120 分钟,题型为客观题(单选 + 多选),采用上机答题的方式。CDA Level II 考试分为两部分,90 分钟的客观题(单选 + 多选)上机答题,以及 120 分钟的案例操作(需自行携带安装好带有数据挖掘功能软件的电脑,如 SQL、PYTHON、SPSS MODELER、R、SAS、WEKA 等,案例数据统一提供 CSV 文件)。CDA Level III 考试则更为复杂,第一阶段为 150 分钟的客观题 + 主观题,闭卷上机答题;第二阶段为在 1 个月内完成项目案例(开卷),提交项目结果后,还需进行 60 分钟的线上答辩面试(只有第一阶段考试通过者,才有资格参与第二阶段面试) 。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~ 免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04