京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst)数据分析师认证作为一套科学化、专业化、国际化的人才考核标准,受到了广泛关注。想要报考 CDA 数据分析师,首先要了解其报考条件。CDA 数据分析师认证考试分为 Level I、Level II 和 Level III 三个级别,每个级别对报考者的要求各有不同。
CDA Level I 是入门级认证,主要面向零基础就业转行者、应届毕业生,以及产品、运营、营销等业务岗与研发、技术岗在职者,还有企业创始人、经理人、管理咨询类岗位从业者等。这一级别的报考条件极为宽松,没有任何硬性要求,无论你是刚刚毕业的大学生,对数据分析充满好奇,想要开启新的职业篇章,还是已经在职场摸爬滚打,期望通过掌握数据分析技能实现职业转型的数据爱好者,都能轻松报考 CDA Level I。它就像是一扇敞开的大门,为所有渴望踏入数据分析领域的人提供了一个绝佳的起点 。
CDA Level II 认证针对的是在数据分析领域有进一步发展需求,希望掌握更深入知识和技能的人群。报考 CDA Level II 需要满足以下条件之一:
已获得 CDA Level I 认证:这要求报考者已经通过了 CDA Level I 的考试,获得了相应的认证证书,且通常需要获得 CDA Level I 认证半年以上 。这意味着报考者已经具备了一定的数据分析基础,能够在此基础上进行更深入的学习和提升。通过 CDA Level II 认证,将充分展示报考者在数据分析领域达到了中级能力水平,有能力承担更复杂的数据处理和分析任务,例如能够运用多元统计、时间序列、数据挖掘等理论知识,结合专业分析软件,从海量数据中提取关键信息,并进行建模分析,最终形成逻辑严密的数据分析报告 。
拥有一年以上数据分析岗位工作经验:对于那些没有 CDA Level I 认证,但在数据分析岗位上积累了足够实践经验的人来说,也有机会报考 CDA Level II。丰富的实际工作经验使得他们对数据分析流程、业务场景有着深刻的理解,能够将实践中的问题与理论知识相结合,通过 CDA Level II 认证进一步提升自己的专业素养和技能水平 。
CDA Level III 是高级认证,专为追求在数据分析领域达到专家水平的专业人士设计。这一级别的报考条件较为严格,在新版考试大纲中明确规定,需要逐级通过前一级别的认证才能报考。也就是说,报考者必须先成功通过 CDA Level I 和 Level II 认证,才有资格报考 CDA Level III 。这是因为 CDA Level III 要求报考者不仅要掌握 CDA Level II 的所有理论及技术,还需要深入了解计算机技术、软件开发技术、大数据分析架构及企业战略分析方法等知识体系,能够带领团队完成复杂的数据整合与管理工作,为企业发展提供全方位的数据支持。例如,在面对企业整体数据资产的规划和管理时,能够从战略高度制定有效的方案,通过敏锐的洞察力和判断力,将数据转化为推动企业前进的有力武器 。
报名材料准备:在报名时,报考者需要根据不同级别准备相应的材料。一般来说,报名信息填写需真实有效,包括个人基本信息、学历信息等。报考 CDA Level II 和 Level III 时,如果涉及到前一级别认证证书的要求,需要准备好证书的照片或扫描件,以便在报名过程中上传审核 。
CDA Level I 和 Level II 考试随报随考,考生在报名成功后,可在一年内自行选择时间,预约就近的考试中心进行考试。目前,CDA Level I + II 在中国内地 30 + 省市,70 + 城市设有 250 + 考场,为考生提供了极大的便利。而 CDA Level III 考试一年举办四届,分别在 3、6、9、12 月的最后一个周六,每届考前一个月截止该届报名。考试地点设置在中国内地 30 所城市,如北京、上海、天津、重庆、成都、深圳、广州等 。
CDA Level I 考试时间为 120 分钟,题型为客观题(单选 + 多选),采用上机答题的方式。CDA Level II 考试分为两部分,90 分钟的客观题(单选 + 多选)上机答题,以及 120 分钟的案例操作(需自行携带安装好带有数据挖掘功能软件的电脑,如 SQL、PYTHON、SPSS MODELER、R、SAS、WEKA 等,案例数据统一提供 CSV 文件)。CDA Level III 考试则更为复杂,第一阶段为 150 分钟的客观题 + 主观题,闭卷上机答题;第二阶段为在 1 个月内完成项目案例(开卷),提交项目结果后,还需进行 60 分钟的线上答辩面试(只有第一阶段考试通过者,才有资格参与第二阶段面试) 。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22