
“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。
一、特征工程概念的理解
简单说,特征工程是能够将数据像艺术一样展现的技术。
本质上说,呈现给算法的数据应该能拥有基本数据的相关结构或属性 。当做特征工程时,其实是将数据属性转换为数据特征的过程,属性代表了数据的所有维度,在数据建模时,如果对原始数据的所有属性进行学习,并不能很好的找到数据的潜在趋势,而通过特征工程对你的数据进行预处理的话,你的算法模型能够减少受到噪声的干扰,这样能够更好的找出趋势;
事实上,好的特征甚至能够帮你实现使用简单的模型达到很好的效果;
但是,对于特征工程中引用的新特征,需要验证它的确提高了预测的准确度,而不是加入了一个无用的特征,不然只会增加算法运算的复杂度。
二、特征工程常用方法
1、时间戳处理
时间戳通常需要分离成多个维度比如年、月、日、小时、分钟、秒钟。但在很多的应用中,大量的信息是不需要的,因此我们在呈现时间的时候,试着保证你所提供的所有数据是你的模型所需要的,并且别忘了时区,加入你的数据源来自不同的地理数据源,别忘了利用时区将数据标准化。
2、离散型变量处理
举一个简单的例子,由{红,黄,蓝}组成的离散型变量,最常用的方式是吧每个变量值转换成二元属性,即从{0.1}取一个值,也就是常说的独热编码(one-hot code)。
3、分箱/分区
有时候,将连续型变量转换成类别呈现更有意义,同时能够使算法减少噪声的干扰,通过将一定范围内的数值划分成确定的块。
只有了解变量的领域知识的基础,确定属性能够划分成简洁的范围时分区才有意义,即所有的数值落入一个分区时能够呈现出共同的特征。在实际的运用中,当你不想让你的模型总是尝试区分值之间是否太近时,分区能够避免出现过拟合。例如,如果你感兴趣的是将一个城市作为总体,这时你可以将所有落入该城市的维度整合成一个整体。分箱也能减小小错误的影响,通过将一个给定值划入到最近的块中。如果划分范围的数量和所有可能值相近,或对你来说准确率很重要的话,此时分箱就不合适了。
4、交叉特征
交叉特征算是特征工程中非常重要的方法之一,它将两个或更多的类别属性组合成一个。当组合的特征要比单个特征更好时,这是一项非常有用的技术。数学上来说,是对类别特征的所有值进行交叉相乘。
假如拥有一个特征A,A有两个可能值{A1.A2}。拥有一个特征B,存在{B1.B2}等可能值。然后,A&B之间的交叉特征如下:{(A1.B1),(A1.B2),(A2.B1),(A2.B2)},并且你可以给这些组合特征取任何名字。但是需要明白每个组合特征其实代表着A和B各自信息协同作用。
5、特征选择
为了得到更好的模型,使用某些算法自动的选出原始特征的子集。这个过程,你不会构建或修改你拥有的特征,但是会通过修建特征来达到减少噪声和冗余。
特征选择算法可能会用到评分方法来排名和选择特征,比如相关性或其他确定特征重要性的方法,更进一步的方法可能需要通过试错,来搜素出特征子集。
还有通过构建辅助模型的方法,逐步回归就是模型构造过程中自动执行特征选择算法的一个实例,还有像Lasso回归和岭回归等正则化方法也被归入到特征选择,通过加入额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛化能力。
6、特征缩放
有时候,你可能会注意到某些特征比其他特征拥有高得多的跨度值。举个例子,将一个人的收入和他的年龄进行比较,更具体的例子,如某些模型(像岭回归)要求你必须将特征值缩放到相同的范围值内。通过特征缩放可以避免某些特征获得大小非常悬殊的权重值。
7、特征提取
特征提取涉及到从原始属性中自动生成一些新的特征集的一系列算法,降维算法就属于这一类。特征提取是一个自动将观测值降维到一个足够建模的小数据集的过程。
对于列表数据,可使用的方法包括一些投影方法,像主成分分析和无监督聚类算法。
对于图形数据,可能包括一些直线监测和边缘检测,对于不同领域有各自的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04