京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖掘隐藏的相似性规律(如用户分群、产品分类、区域特征聚合)。相较于 SPSS、Python 等专业工具,Excel 凭借 “普及率高、操作门槛低、可视化直观” 的优势,成为中小规模数据(通常 10 万条以内)聚类分析的首选工具 —— 尤其适合运营、财务、行政等非技术岗位从业者,无需代码即可实现 “数据分组→规律识别→决策支撑” 的闭环。本文将从基础逻辑到实战操作,系统讲解 Excel 数据聚类分析的方法与应用。
聚类分析的本质是 “基于数据特征的自动分组”,无需提前标注类别(与分类分析的 “有监督” 不同)。在 Excel 中,聚类的核心逻辑是:通过数值范围划分、特征关联匹配、可视化差异识别等方式,将具有相似属性的数据(如 “高消费频次 + 高客单价” 的用户)归为同一集群,让隐性规律显性化。
例如:某零售企业的 300 家门店数据(含 “月销售额、客流量、坪效、区域类型”),通过 Excel 聚类可分为 “高销高流型”“高坪效低流型”“低销低坪效型” 等门店集群,为后续差异化运营提供依据。
| 优势维度 | 具体价值 |
|---|---|
| 操作门槛低 | 依赖菜单点击、函数公式,无需掌握编程(Python)或专业算法(K-means) |
| 数据兼容性强 | 直接读取 Excel 原生表格数据,无需格式转换(避免 SPSS、Python 的数据导入问题) |
| 可视化同步性 | 聚类结果可直接联动条件格式、数据透视表、图表,即时生成可落地的分析报告 |
| 中小数据高效 | 针对 1 万 - 10 万条数据,聚类速度优于需环境配置的专业工具 |
适用场景:中小规模数据的探索性聚类(如用户价值分群、产品销量分类、月度数据趋势分组)、非高精度需求的快速分析(如行政部门的员工考勤异常分组);
局限性:不支持大规模数据(10 万条以上易卡顿)、缺乏智能算法优化(如无法自动确定最优聚类数量)、难以处理高维数据(超过 5 个特征时操作复杂)。
聚类分析的准确性依赖 “干净的数据”,Excel 中需完成 3 步核心准备工作,避免因数据质量问题导致聚类偏差。
例:若目标是 “电商用户价值分群”,需保留 “消费频次、客单价、近 30 天活跃天数、总消费额” 等特征,删除 “用户 ID、注册时间” 等无关字段;
操作:选中数据区域→菜单栏 “数据”→“筛选”→勾选目标字段,或直接删除无关列。
Excel 中常见缺失值处理方法:
删除法:若缺失值占比 <5%(如 300 条数据中 10 条缺失),选中缺失行→右键 “删除”;
填充法:若缺失值占比 5%-20%,用 “均值 / 中位数 / 众数” 填充:
数值型数据(如消费额):选中目标列→菜单栏 “开始”→“编辑”→“填充”→“系列”,或用函数=AVERAGE(A2:A301)(均值)、=MEDIAN(A2:A301)(中位数);
分类数据(如区域类型):用=MODE(B2:B301)(众数)填充,或通过 “数据透视表” 统计高频类别后手动补充。
聚类时若特征量级差异大(如 “消费频次” 范围 1-50,“总消费额” 范围 100-10000),会导致 “总消费额” 主导聚类结果。Excel 中用STANDARDIZE函数标准化,将所有特征转化为 “均值 0、标准差 1” 的统一量级:
公式:=STANDARDIZE(原始数据单元格, 该列均值, 该列标准差)
例:对 “消费频次” 列(A2:A301)标准化,先计算均值=AVERAGE(A2:A301)(假设结果在 D2)、标准差=STDEV.S(A2:A301)(结果在 D3),再在 E2 输入=STANDARDIZE(A2,D$2,D$3),下拉填充至 E301。
Excel 无 “一键聚类” 功能,但可通过 “原生功能组合”“进阶工具辅助” 实现不同精度的聚类需求,以下按 “操作难度” 从低到高讲解。
核心逻辑:通过 “分位数” 将连续数值划分为离散区间(如将 “总消费额” 分为 “高、中、低” 三档),再用数据透视表汇总聚类结果,适合新手入门。
确定分位数区间:
目标:将 “总消费额”(A 列)分为 3 档,先计算 25%、50%、75% 分位数(对应低、中、高的临界值):
25% 分位数(Q1):=PERCENTILE.INC(A2:A301,0.25)(假设结果 1000 元);
50% 分位数(Q2):=PERCENTILE.INC(A2:A301,0.5)(假设结果 3000 元);
75% 分位数(Q3):=PERCENTILE.INC(A2:A301,0.75)(假设结果 6000 元)。
用 IF 函数标注聚类标签:
在 B 列(聚类标签列)输入公式,按分位数划分档次:
=IF(A2<=1000,"低价值用户",IF(A2<=3000,"中价值用户","高价值用户")),下拉填充至 B301。
结果解读:若 “高价值用户” 的平均客单价是低价值用户的 5 倍、消费频次是 3 倍,验证聚类逻辑合理。
当聚类需结合 “两个特征的关联关系”(如 “消费频次 vs 客单价”),可通过条件格式上色、散点图分区实现直观聚类,快速识别 “异常集群”。
选中 “坪效” 列(A 列)→菜单栏 “开始”→“条件格式”→“色阶”→选 “红 - 黄 - 绿”(绿色代表高坪效,红色代表低坪效);
同理对 “客流量” 列(B 列)设置色阶,形成 “双特征颜色矩阵”:绿色 + 绿色 = 高坪效高客流,红色 + 红色 = 低坪效低客流。
添加趋势线:右键散点→“添加趋势线”→选择 “线性”,勾选 “显示公式”;
手动分区:在散点图上插入 “直线”,按趋势线将图表分为 4 个象限:
第一象限(右上):高坪效高客流(优质门店);
第二象限(左上):高坪效低客流(潜力门店,需提升客流);
第三象限(左下):低坪效低客流(待优化门店);
第四象限(右下):低坪效高客流(低效门店,需提升坪效)。
当聚类涉及 3 个以上特征(如 “销量、利润率、库存周转率、复购率”),需用 Power Query 做特征整合,结合 Excel 的 “分析工具库” 做相关性辅助,提升聚类精度。
数据区域→“数据”→“从表格 / 区域”(进入 Power Query 编辑器);
若存在 “文本型特征”(如 “产品类别”),先通过 “添加列”→“条件列” 转为数值(如 “食品 = 1,日用品 = 2”);
点击 “关闭并上载”,将处理后的数据返回到 Excel 表格。
先启用分析工具库:“文件”→“选项”→“加载项”→“Excel 加载项”→“转到”→勾选 “分析工具库”;
菜单栏 “数据”→“数据分析”→选 “相关系数”→输入区域选 “销量、利润率、库存周转率” 列→输出区域选空白单元格;
结果解读:若 “销量与利润率” 的相关系数为 0.7(强正相关),可合并为 “盈利能力特征”,减少聚类维度(避免特征冗余)。
=LOOKUP(A2*0.4+B2*0.3+C2*0.3,{0,2,4},{"C类产品","B类产品","A类产品"})
(注:0.4、0.3 为特征权重,根据业务重要性调整,如 “销量” 权重高于 “库存周转率”)。
以某电商平台的 500 名用户数据(含 “近 30 天活跃天数、消费频次、客单价、总消费额”)为例,完整演示 “目标定义→数据准备→聚类操作→业务应用” 的全流程。
将用户分为 “核心用户、活跃用户、潜力用户、沉睡用户”4 类,支撑会员体系设计。
清洗:删除 “总消费额 = 0” 的无效用户(12 条),用AVERAGE填充 “活跃天数” 的缺失值(8 条);
标准化:对 4 个特征用STANDARDIZE函数处理,消除量级差异(如 “总消费额” 100-50000 元,“活跃天数” 1-30 天)。
用PERCENTILE.INC计算 4 个特征的 75%、50%、25% 分位数,设定 “达标阈值”(如活跃天数≥20 天为达标);
用COUNTIF统计每个用户的 “达标特征数”:达标 4 个 = 核心用户,3 个 = 活跃用户,2 个 = 潜力用户,≤1 个 = 沉睡用户;
数据透视表汇总:核心用户仅占 15%,但贡献了 50% 的总消费额;沉睡用户占 40%,平均消费频次仅 0.5 次;
核心用户:推送专属权益(如免运费、专属客服),提升留存;
活跃用户:推出 “满额赠礼”,推动向核心用户转化;
潜力用户:发送 “新人优惠券”,提升消费频次;
沉睡用户:触发 “回归红包”(如满 100 减 30),唤醒消费。
误区 1:分位数区间固定化:不同数据的分布不同,不能默认 “3 档 = 25%、50%、75%”,需结合业务调整(如高价值用户仅占 10%,则用 90% 分位数作为临界值);
误区 2:忽视特征权重:多特征聚类时,若所有特征同等对待(如 “库存周转率” 与 “销量” 权重相同),可能偏离业务目标,需通过专家评分或 A/B 测试确定权重;
误区 3:聚类结果不验证:需用 “业务常识” 验证,如若 “高价值用户” 的复购率低于低价值用户,说明聚类逻辑错误,需重新调整特征。
当数据量 > 10 万条:用 Python(Pandas)做数据清洗后,导出为 Excel 格式,再用本文方法聚类(兼顾效率与操作便捷性);
需智能确定聚类数量:用 SPSS 的 “K-means 聚类” 计算最优 K 值(如 K=4),将聚类标签导入 Excel,再做可视化与业务解读;
自动化聚类:通过 Excel VBA 编写宏代码,实现 “数据更新→自动聚类→生成报告” 的流程(适合高频聚类需求,如月度用户分群)。
Excel 数据聚类分析的本质,不是追求 “算法先进性”,而是通过 “低成本、高适配的操作”,让非技术人员也能将 “数据分组” 转化为可执行的业务动作。无论是用数据透视表做用户分群,还是用散点图做门店聚类,最终目标都是:
从 “杂乱数据” 中提炼 “清晰集群”(如将 500 个用户归为 4 类,而非逐个分析);
对于多数职场人而言,掌握 Excel 聚类分析,不仅是提升数据分析能力,更是建立 “用数据驱动决策” 的思维 —— 无需复杂工具,只需一张表格、几个函数,就能让数据说话,让决策更精准。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27