京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘是一种通过发现模式、关联和趋势来提取有价值信息的过程。在数据挖掘中,存在许多常用的算法,用于处理和分析各种类型的数据。以下是一些在数据挖掘中常用的算法。
决策树:决策树是一种基于树状结构的分类和回归方法。它通过将数据集划分为不同的子集,并根据特征属性进行决策,从而生成可以预测目标变量的模型。
支持向量机(SVM):SVM是一种监督学习算法,用于分类和回归分析。它通过找到一个最优超平面来分离不同类别的数据点,并将其推广到新的未标记数据点上。
朴素贝叶斯:朴素贝叶斯是一种基于贝叶斯定理的概率分类算法。它假设每个特征之间相互独立,并根据训练数据计算类别的概率分布,从而对新样本进行分类。
K均值聚类:K均值聚类是一种无监督学习算法,用于将数据点划分为预定数量的簇。它通过将数据点分配到离其最近的簇中心来实现聚类,直到达到预定的迭代条件。
随机森林:随机森林是一种集成学习算法,通过将多个决策树组合成一个模型来提高预测准确性。它通过在原始数据的不同子样本上构建多个决策树,并对结果进行综合来减少过拟合风险。
神经网络:神经网络是一种受生物神经系统启发的机器学习方法。它由多个神经元(或节点)组成的层次结构,并通过调整权重和偏差来学习输入和输出之间的关系。
关联规则:关联规则用于发现数据集中的项集之间的关联关系。它可以帮助找到频繁出现在一起的项,并根据频繁项集生成规则,以便进行推荐或其他应用。
主成分分析(PCA):主成分分析是一种降维技术,用于将高维数据转换为低维空间。它通过找到数据中最大方差的方向,将数据投影到新的坐标系中,从而实现数据的压缩和可视化。
集成学习:集成学习通过结合多个基本模型的预测结果来提高整体的准确性和鲁棒性。它可以使用投票、平均或堆叠等技术进行模型融合。
聚类算法:除了K均值聚类之外,还有其他聚类算法,如层次聚类、DBSCAN和谱聚类等。这些算法根据数据的相似性将样本划分为不同的组或簇。
在实际应用中,具体选择哪种算法取决于数据集的特征、问题的性质以及挖掘的目标。数据挖掘领域还在不断发展,新的算法和技术也在不断涌现,为解决各种挑战提供更多可能性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15