When looking at data scientist salaries and data science roles, it became obvious that there are different, more specific facets within data science. These facets relate to unique job positions, specifically, machine learning operations, NLP, data engineering, and data science itself. Of course, there are even more specific positions than these, but these can give you a general summary of what to expect if you land a job in one of these positions. I wanted to pick these four roles, too, because they can be separated well, almost as if it was there was a clustering algorithm that found jobs that were the most different between one another but that were also in the same population. Below, I will be discussing the average base pay with a low and high range, as well as respective seniority levels, the number of estimates used to determine these numbers, and expected skills and experiences for each role.
机器学习工程师倾向于将已经研究和构建的数据科学模型应用到生产环境中,通常包括软件工程和机器学习算法知识。话虽如此,你可以想象得到相当不错的薪水。这个特别的估计来自于GlassDoor[3]。
根据大约1900提交的工资,有以下广泛的范围:
正如你所看到的,这是一个范围,就像任何职位一样,你的经验越多,工资越高也就不足为奇了。除了多年的经验,你工作的州,你雇用的技能,公司也会努力创造最终的工资数额--所有这些职位都是如此。为了获得更多的粒度,我们可以查看不同的资历级别,以便了解级别的增加与工资数额的关系:
以下是一些来自个人经验的技能,您可以期望在机器学习职位上使用:
通常被称为NLP工程师,这个角色通常专注于将数据科学模型或机器学习算法应用于文本数据。NLP工作的一些例子是主题建模、大量文本、语义分析和chatbot代理。话虽如此,你也可以想象出相当不错的工资--然而,这个工资细目将低于机器学习工程师,很可能是因为这个角色不太包容,更专注于数据科学中的特定主题。这个特别的估计也来自于Glassdoor[5]。
根据大约20提交的工资,有以下广泛的范围:
值得注意的是,报告的工资数额相当低,所以对这个范围持怀疑态度,但尽管如此,对这个工资仍然有很高的信心。
所有这些数量都低于机器学习,然而,与大多数其他角色相比,它们仍然相当高。
以下是一些来自个人经验的技能,你可以期望在自然语言处理工程师的职位上使用:
也许一个更常见的角色是数据工程,它与数据科学比在数据科学之下更相关。然而,这个角色对数据科学工作来说仍然至关重要,有时,数据科学家可以期望知道数据工程师所知道的大部分内容,所以我将在本文分析中包括它。数据工程的一些示例包括创建存储最终用于数据科学模型的数据的ETL作业,以及自动存储模型结果和执行查询优化。这个特别的估计也来自于Glassdoor[7]。
根据大约~6,800提交的工资,有以下广泛的范围:
这个范围更类似于自然语言处理工程师的角色,然而,它可能与日常工作中的实际工作角色相距最远。同样重要的是要注意,这个职位涉及到相当多的估计。
以下是一些来自个人经验的技能,您可以期望在数据工程师职位上使用:
最后,但并非最不重要的,是数据科学家的角色。虽然这个角色看起来是最一般的,但实际上也可以是具体的,通常主要由模型构建过程组成--有时需要数据工程和机器学习工程师操作,但可能性较小--但仍然可能涉及自然语言处理方面的专业(通常如果重点是NLP,那么数据科学家将以此为标题--但不是一直)。这个角色还可以有更多的可变性,所以我们也可以期待一个广泛的范围。这个特别的估计也来自于Glassdoor[9]。
根据大约~16,200提交的工资,有以下广泛的范围:
出人意料地低于预期,这一角色在本分析中的大多数其他角色附近。话虽如此,它可能是对离群值最真实和稳健的,因为它是迄今为止提交来组成这些工资数额的最多的工资数额。
以下是一些来自个人经验的技能,您可以期望在数据科学职位上使用:
While these roles can have several similarities and differences, the same can be said about their salary ranges. Nearly three of the four salaries were similar, with one standing out. That role was machine learning engineer —why is that?My understanding is that this role requires a knowledge of most data science concepts, and especially their output, as well the software engineering involved around deployment — that is a lot to know and employ, so it makes sense why a role that composes both software engineering and data science pays so well. In addition to the salary breakdown of each data science role — or similar to data science in some way, were the skills that you can expect to employ, so that you can have a better idea of the role and how that relates to the salary amount.
总结一下,以下是我们分析的四个职位,以及你可以期望使用的技能:
我希望你觉得我的文章既有趣又有用。如果你同意这些数字和范围,请随时在下面发表评论--为什么或为什么不?你认为有一个角色,尤其是,离现实如此之远吗?你还能想到哪些数据科学角色会有不同的工资细分吗?一个角色的其他因素会影响薪水吗?
这些薪金是在美国报告的,因此它们是以美元数额计算的。我与这些公司中的任何一家都没有关联。
请随时查看我的个人资料和其他文章,并在LinkedIn上联系我。
[1] Photo byThought CatalogonUnsplash, (2018)
[2]Photo Byassed PhotographyonUnsplash,(2018)
[3]Glassdoor,Inc.,机器学习工程师工资,(2008-2021)
[4]Photo Bybatrick TomassoonUnsplash,(2016)
[5]Glassdoor,Inc.自然语言处理工程师工资,(2008-2021)
[6]Caspar Camille RubinonUnsplash的照片,(2017)
[7]Glassdoor,Inc.,数据工程师工资,(2008-2021)
[8]照片byDaria NepriakhinaonUnsplash,(2017)
[9]Glassdoor,Inc.,数据科学家工资,(2008-2021)
Bio: Matthew Przybyla is Senior 数据科学家 at Favor Delivery, and a freelance technical writer, especially in data science.
原创。经允许转发。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24