
关于数据科学家在金融服务领域的工作,最好的事情之一是用例的丰富程度和数据科学家可以对现实世界产生的影响。当然,所有面向客户的业务都有常见的应用程序,如个性化体验、有针对性的交叉销售优惠或防止客户流失的积极策略。但银行、保险公司和他们的金融技术挑战者以许多其他有趣和有影响力的方式使用数据和分析。
例子包括:
对许多数据科学家来说,第二个吸引力是数据集的广度和深度,可以用来产生有意义的见解。银行和保险公司通常可以获得大量的数据,如人口统计、交易和关系,无论是在宏观层面还是在个人客户层面。尽管对它们的使用有一些限制,但像这样的高质量数据集的可用性通常可以追溯到几年前,这可能是数据科学家在构建预测模型时的梦想。
金融服务公司在数据和技术上的支出的规模以及其数据生态系统的相对成熟度也可以使它们对数据科学家具有吸引力。例如,大多数银行将其年收入的10%以上用于技术。数据和分析支出是其中越来越重要的组成部分,对许多大型企业来说,每年很容易达到或超过数亿美元--这一数字是科技行业中除最大企业外的所有企业都无法比拟的。由于多年在数据上的花费,很多也拥有了相对成熟的数据团队。因此,数据科学家可能会发现已经建立良好的支持系统,并且不希望自己管理从数据管道到数据治理的所有事情。
最后,在大多数地区,银行、保险公司和金融机构通常是数据科学家的最佳收入来源。虽然它本身很有吸引力,但它也是一个有用的指标,表明数据科学在这些公司中的价值,以及它对长期职业生涯的影响。在至少一家主要的全球银行,首席数据和分析官现在直接向集团首席执行官报告。
当然,有一个陷阱。在银行和保险公司(尤其是较大的银行和保险公司)从事数据科学家工作的所有有趣之处,有时也会使其变得笨拙和令人沮丧。一些数据科学家将这些纯粹视为挑战;其他人也可能认为它们是发展自己并产生更大影响的机会。
鉴于数据和分析在行业中的高风险使用,有一个很高的信任标准来证明数据和模型在实际生活中的使用足够好。例如,如果一个数据科学家正在建立一个预测模型,可以用来拒绝某人的贷款或保险,或者将某人标记为潜在的洗钱者,那么他们可能应该期待大量的审查。
类似地,考虑到客户通常信任银行和保险公司提供他们生活中最亲密的方面--例如,他们的收入或他们的病史,数据科学家可以围绕数据可用性和可用性找到详细的控制。每个行业都存在关于数据隐私、主权、道德和安全的问题,但很少有其他行业在管理这些问题上花费如此多的时间和精力。
在数据和相关技术上的大量支出,以及由数据工程师、分析师和风险专家组成的资源丰富的团队,可以为数据科学家提供茁壮成长的肥沃土壤。但是,同样的因素也会导致丧失敏捷性。在许多情况下,这些可能会转化为数据科学家的限制性技术选择,或者在他们的工作真正出现在生产中之前,通过精心控制和移交的多步骤过程。让新加入银行业的人感到惊讶的一个特殊领域是,需要让一个独立的团队对所有重要模型进行正式验证--这一步骤可以为正常的模型生命周期增加几周甚至几个月的时间。
支撑上述所有挑战的是,金融服务业是全球监管最严格的行业之一。作为回应,大多数银行和保险公司建立了一个DNA,尤其是在2008年金融危机之后。在许多地区,银行和保险公司的高级经理对其雇主的行为负有个人责任,因此任何可能违反客户信任或监管要求的事情都要特别谨慎对待。数据和算法的使用勾选了所有的框。毫不奇怪,金融监管机构是第一批就负责任地使用数据和人工智能提出指导方针的国家之一--例如,在新加坡、香港、欧盟、英国和美国。
显然,不是每个数据科学家都会喜欢银行、保险公司,甚至是受监管的金融技术公司。但是,如果:
BIOS:Shameek Kunduis是从技术和商业战略角度来看人工智能的领先专家,他的大部分职业生涯都在推动金融服务业负责任地采用数据分析/AI。他是Truera的首席战略官和金融服务主管。他是英格兰银行人工智能公私论坛和经合组织人工智能全球伙伴关系的成员,也是新加坡金融管理局人工智能公平、道德、问责制和透明度指导委员会的成员。最近,Shameek是渣打银行的集团首席数据官,在那里他帮助银行在多个领域探索和采用人工智能(例如,信贷、金融犯罪合规、客户分析、监控)。
Divya Gopinath是TruEra的研究工程师,TruEra是一家专注于让人工智能可信和透明的公司。在加入之前,Divyacomplement在麻省理工学院获得了本科和硕士学位,她的研究重点是为医疗保健领域构建机器学习算法。Divya是值得信赖的人工智能《走向数据科学》的主要贡献者,专注于公平和解决机器学习模型中的偏见的主题。
Arridhana Ciptadiis是Truera工程团队的成员。他以前是蓝六边形创始团队的一员,在那里他是公司所有机器学习工作的技术负责人。在此之前,他是亚马逊Lab126的机器学习科学家,在那里他为亚马逊的各种产品开发机器学习和计算机视觉技术。Ciptadi拥有博士学位佐治亚理工学院计算机科学专业。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05