
When looking at data scientist salaries and data science roles, it became obvious that there are different, more specific facets within data science. These facets relate to unique job positions, specifically, machine learning operations, NLP, data engineering, and data science itself. Of course, there are even more specific positions than these, but these can give you a general summary of what to expect if you land a job in one of these positions. I wanted to pick these four roles, too, because they can be separated well, almost as if it was there was a clustering algorithm that found jobs that were the most different between one another but that were also in the same population. Below, I will be discussing the average base pay with a low and high range, as well as respective seniority levels, the number of estimates used to determine these numbers, and expected skills and experiences for each role.
机器学习工程师倾向于将已经研究和构建的数据科学模型应用到生产环境中,通常包括软件工程和机器学习算法知识。话虽如此,你可以想象得到相当不错的薪水。这个特别的估计来自于GlassDoor[3]。
根据大约1900提交的工资,有以下广泛的范围:
正如你所看到的,这是一个范围,就像任何职位一样,你的经验越多,工资越高也就不足为奇了。除了多年的经验,你工作的州,你雇用的技能,公司也会努力创造最终的工资数额--所有这些职位都是如此。为了获得更多的粒度,我们可以查看不同的资历级别,以便了解级别的增加与工资数额的关系:
以下是一些来自个人经验的技能,您可以期望在机器学习职位上使用:
通常被称为NLP工程师,这个角色通常专注于将数据科学模型或机器学习算法应用于文本数据。NLP工作的一些例子是主题建模、大量文本、语义分析和chatbot代理。话虽如此,你也可以想象出相当不错的工资--然而,这个工资细目将低于机器学习工程师,很可能是因为这个角色不太包容,更专注于数据科学中的特定主题。这个特别的估计也来自于Glassdoor[5]。
根据大约20提交的工资,有以下广泛的范围:
值得注意的是,报告的工资数额相当低,所以对这个范围持怀疑态度,但尽管如此,对这个工资仍然有很高的信心。
所有这些数量都低于机器学习,然而,与大多数其他角色相比,它们仍然相当高。
以下是一些来自个人经验的技能,你可以期望在自然语言处理工程师的职位上使用:
也许一个更常见的角色是数据工程,它与数据科学比在数据科学之下更相关。然而,这个角色对数据科学工作来说仍然至关重要,有时,数据科学家可以期望知道数据工程师所知道的大部分内容,所以我将在本文分析中包括它。数据工程的一些示例包括创建存储最终用于数据科学模型的数据的ETL作业,以及自动存储模型结果和执行查询优化。这个特别的估计也来自于Glassdoor[7]。
根据大约~6,800提交的工资,有以下广泛的范围:
这个范围更类似于自然语言处理工程师的角色,然而,它可能与日常工作中的实际工作角色相距最远。同样重要的是要注意,这个职位涉及到相当多的估计。
以下是一些来自个人经验的技能,您可以期望在数据工程师职位上使用:
最后,但并非最不重要的,是数据科学家的角色。虽然这个角色看起来是最一般的,但实际上也可以是具体的,通常主要由模型构建过程组成--有时需要数据工程和机器学习工程师操作,但可能性较小--但仍然可能涉及自然语言处理方面的专业(通常如果重点是NLP,那么数据科学家将以此为标题--但不是一直)。这个角色还可以有更多的可变性,所以我们也可以期待一个广泛的范围。这个特别的估计也来自于Glassdoor[9]。
根据大约~16,200提交的工资,有以下广泛的范围:
出人意料地低于预期,这一角色在本分析中的大多数其他角色附近。话虽如此,它可能是对离群值最真实和稳健的,因为它是迄今为止提交来组成这些工资数额的最多的工资数额。
以下是一些来自个人经验的技能,您可以期望在数据科学职位上使用:
While these roles can have several similarities and differences, the same can be said about their salary ranges. Nearly three of the four salaries were similar, with one standing out. That role was machine learning engineer —why is that?My understanding is that this role requires a knowledge of most data science concepts, and especially their output, as well the software engineering involved around deployment — that is a lot to know and employ, so it makes sense why a role that composes both software engineering and data science pays so well. In addition to the salary breakdown of each data science role — or similar to data science in some way, were the skills that you can expect to employ, so that you can have a better idea of the role and how that relates to the salary amount.
总结一下,以下是我们分析的四个职位,以及你可以期望使用的技能:
我希望你觉得我的文章既有趣又有用。如果你同意这些数字和范围,请随时在下面发表评论--为什么或为什么不?你认为有一个角色,尤其是,离现实如此之远吗?你还能想到哪些数据科学角色会有不同的工资细分吗?一个角色的其他因素会影响薪水吗?
这些薪金是在美国报告的,因此它们是以美元数额计算的。我与这些公司中的任何一家都没有关联。
请随时查看我的个人资料和其他文章,并在LinkedIn上联系我。
[1] Photo byThought CatalogonUnsplash, (2018)
[2]Photo Byassed PhotographyonUnsplash,(2018)
[3]Glassdoor,Inc.,机器学习工程师工资,(2008-2021)
[4]Photo Bybatrick TomassoonUnsplash,(2016)
[5]Glassdoor,Inc.自然语言处理工程师工资,(2008-2021)
[6]Caspar Camille RubinonUnsplash的照片,(2017)
[7]Glassdoor,Inc.,数据工程师工资,(2008-2021)
[8]照片byDaria NepriakhinaonUnsplash,(2017)
[9]Glassdoor,Inc.,数据科学家工资,(2008-2021)
Bio: Matthew Przybyla is Senior 数据科学家 at Favor Delivery, and a freelance technical writer, especially in data science.
原创。经允许转发。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10